纳米线
材料科学
纳米技术
鳍
汽-液-固法
微尺度化学
催化作用
半导体
吸附
化学物理
增长率
刻面
化学工程
结晶学
光电子学
化学
复合材料
几何学
物理化学
生物化学
数学教育
数学
工程类
作者
Babak Nikoobakht,Aaron C. Johnston‐Peck,J. Tersoff
标识
DOI:10.1021/acs.jpcc.3c04726
摘要
In the Au-catalyzed surface-directed vapor–liquid–solid (S-VLS) growth of semiconductor nanowires, individual Au nanodroplets result in the lateral growth of single nanowires per site. However, using the same process, the growth of single nanofins (fins) per catalyst site becomes unpredictable. We show that as the Au catalyst pattern size reduces to the microscale and smaller, the lateral fin growth is suppressed, and instead lateral nanowires prevail. We identify the origin of this phenomenon and reveal a novel aspect of Au catalysis in the growth of the ZnO nanostructures. While a Au nanodroplet drives the elongation of the lateral nanowire on the surface via a VLS process, we show that the surface-adsorbed Au atoms at the vapor–semiconductor interface catalyze the out-of-plane growth on the (0002) ZnO plane, resulting in fins. For instance, as the Au film thickness is increased from 2 to 8 nm, the out-of-plane fin growth rate increases. At and beyond 12 nm thickness, the fin growth abruptly stops, and only nanowires form. We attribute this behavior to a decline in the Au surface adatom concentration in response to the lower chemical potential (Gibbs–Thomson vapor pressure) of Au as the particle size increases. As a result, the fin formation from a given catalyst pattern strongly depends on the arrangement of the neighboring catalyst patterns, their shape, and thickness. These findings enable strategies to facilitate controlled single-fin formation in ordered arrays using micro- and submicrometer-size catalyst patterns.
科研通智能强力驱动
Strongly Powered by AbleSci AI