A parallel ensemble optimization and transfer learning based intelligent fault diagnosis framework for bearings

计算机科学 一般化 断层(地质) 学习迁移 人工智能 领域(数学分析) 最优化问题 信号(编程语言) 功能(生物学) 重新使用 集成学习 算法 机器学习 模式识别(心理学) 数据挖掘 数学 生态学 数学分析 进化生物学 地震学 生物 程序设计语言 地质学
作者
Guiting Tang,Cai Yi,Lei Liu,Xu Du,Qiuyang Zhou,Yongxu Hu,Pengcheng Zhou,Jianhui Lin
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107407-107407 被引量:15
标识
DOI:10.1016/j.engappai.2023.107407
摘要

Transfer learning (TL) is an important method to accurately identify the bearing health status in cross-domain and ensure the safe operation of machinery. With the advancement in research, it will become a trend to choose different neural networks or optimization functions to improve and re-model fault diagnosis methods. However, the variants of these fault diagnostic methods are less capable of generalizing input dimensions and do not significantly increase demand for machinery expertise. The idea of ensemble learning solves the problem of low generalization. In this research, a parallel ensemble optimization loss function and multi-source TL based model are proposed to solve the problem of unknown distribution difference between source domain and target domain, thus improving the generalization of optimization objectives. Firstly, based on the signal demodulation method, an adaptive input module is constructed to automatically select the input length from the original vibration signal. Secondly, a TL network with low-dimensional features reuse is constructed to achieve weight and bias sharing. Thirdly, a parallel ensemble optimization loss function is developed to align the data whose distribution is unknown between source and target domains. Finally, two cases with multi-source, unsupervised, and cross-domain TL are used to verify the performance of the proposed method. The average accuracy in case 1 and case 2 is 99.81 % and 99.17 % respectively. It is proved that the proposed method can not only get rid of the limitation of manual input length setting, but also overcome the limitation of optimization function, which is more effective than the existing intelligent fault diagnosis models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
义气雍发布了新的文献求助10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
科研助手6应助科研通管家采纳,获得10
1秒前
LYL应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
liupan002应助科研通管家采纳,获得20
1秒前
丘比特应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
黄大师完成签到 ,获得积分10
3秒前
爱笑的眼睛完成签到,获得积分10
3秒前
羽墨空空发布了新的文献求助10
3秒前
4秒前
微笑的小霸王完成签到,获得积分10
7秒前
健壮的雁风完成签到,获得积分10
8秒前
chx2256120完成签到,获得积分10
9秒前
阿治完成签到 ,获得积分0
9秒前
初空月儿完成签到,获得积分10
14秒前
cdercder应助快船总冠军采纳,获得10
15秒前
ket完成签到,获得积分10
16秒前
19秒前
小张想发刊完成签到,获得积分10
20秒前
29秒前
对方正在长头发完成签到 ,获得积分10
30秒前
感性的蚂蚁完成签到,获得积分20
34秒前
34秒前
summitekey完成签到 ,获得积分10
38秒前
38秒前
kelaibing完成签到,获得积分10
40秒前
XRenaissance完成签到,获得积分10
40秒前
1111完成签到 ,获得积分10
40秒前
残酷的风完成签到,获得积分10
42秒前
若晴发布了新的文献求助10
45秒前
热情的明轩完成签到,获得积分10
45秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823474
求助须知:如何正确求助?哪些是违规求助? 3365872
关于积分的说明 10437829
捐赠科研通 3085005
什么是DOI,文献DOI怎么找? 1697077
邀请新用户注册赠送积分活动 816191
科研通“疑难数据库(出版商)”最低求助积分说明 769442