A simple Monte Carlo method for estimating power in multilevel designs.

协变量 蒙特卡罗方法 计算机科学 多级模型 差异(会计) 人口 集合(抽象数据类型) 随机效应模型 样本量测定 统计 数学 机器学习 医学 荟萃分析 人口学 会计 社会学 内科学 业务 程序设计语言
作者
Craig K. Enders,Brian T. Keller,Michael P. Woller
出处
期刊:Psychological Methods [American Psychological Association]
被引量:10
标识
DOI:10.1037/met0000614
摘要

Estimating power for multilevel models is complex because there are many moving parts, several sources of variation to consider, and unique sample sizes at Level 1 and Level 2. Monte Carlo computer simulation is a flexible tool that has received considerable attention in the literature. However, much of the work to date has focused on very simple models with one predictor at each level and one cross-level interaction effect, and approaches that do not share this limitation require users to specify a large set of population parameters. The goal of this tutorial is to describe a flexible Monte Carlo approach that accommodates a broad class of multilevel regression models with continuous outcomes. Our tutorial makes three important contributions. First, it allows any number of within-cluster effects, between-cluster effects, covariate effects at either level, cross-level interactions, and random coefficients. Moreover, we do not assume orthogonal effects, and predictors can correlate at either level. Second, our approach accommodates models with multiple interaction effects, and it does so with exact expressions for the variances and covariances of product random variables. Finally, our strategy for deriving hypothetical population parameters does not require pilot or comparable data. Instead, we use intuitive variance-explained effect size expressions to reverse-engineer solutions for the regression coefficients and variance components. We describe a new R package mlmpower that computes these solutions and automates the process of generating artificial data sets and summarizing the simulation results. The online supplemental materials provide detailed vignettes that annotate the R scripts and resulting output. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cy完成签到,获得积分10
2秒前
2秒前
羊羊羊完成签到,获得积分20
3秒前
卡图兰发布了新的文献求助10
3秒前
5秒前
今后应助鲜于灵竹采纳,获得30
5秒前
冷艳的纸鹤完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
无花果应助勤恳的流沙采纳,获得10
6秒前
Mastertry发布了新的文献求助10
7秒前
羊羊羊发布了新的文献求助10
8秒前
9秒前
9秒前
wwww发布了新的文献求助10
9秒前
疯狂的冬瓜完成签到,获得积分10
9秒前
10秒前
orixero应助团团采纳,获得10
10秒前
万能图书馆应助公子语默采纳,获得10
10秒前
wgw完成签到,获得积分10
11秒前
MrTStar发布了新的文献求助10
12秒前
别吃我的鱼完成签到,获得积分10
12秒前
yy发布了新的文献求助10
12秒前
梦想发布了新的文献求助50
15秒前
小杜完成签到,获得积分10
15秒前
无花果应助显隐采纳,获得10
17秒前
英姑应助...采纳,获得10
21秒前
wwww完成签到,获得积分20
21秒前
甜甜映波完成签到,获得积分20
22秒前
田様应助景穆采纳,获得10
23秒前
留胡子的丹彤完成签到 ,获得积分10
25秒前
上官若男应助Harlotte采纳,获得10
25秒前
25秒前
CodeCraft应助勤恳的流沙采纳,获得10
26秒前
SGX发布了新的文献求助10
26秒前
丘比特应助TheQ采纳,获得10
27秒前
甜甜映波发布了新的文献求助10
27秒前
风中的梨愁完成签到 ,获得积分10
27秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829234
求助须知:如何正确求助?哪些是违规求助? 3371950
关于积分的说明 10469874
捐赠科研通 3091536
什么是DOI,文献DOI怎么找? 1701181
邀请新用户注册赠送积分活动 818246
科研通“疑难数据库(出版商)”最低求助积分说明 770765