清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Disability risk prediction model based on machine learning among Chinese healthy older adults: results from the China Health and Retirement Longitudinal Study

机器学习 逻辑回归 随机森林 接收机工作特性 人工智能 朴素贝叶斯分类器 纵向研究 医学 Lasso(编程语言) 心理干预 多层感知器 老年学 人工神经网络 计算机科学 支持向量机 万维网 病理 精神科
作者
Yuchen Han,Shaobing Wang
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fpubh.2023.1271595
摘要

Background Predicting disability risk in healthy older adults in China is essential for timely preventive interventions, improving their quality of life, and providing scientific evidence for disability prevention. Therefore, developing a machine learning model capable of evaluating disability risk based on longitudinal research data is crucial. Methods We conducted a prospective cohort study of 2,175 older adults enrolled in the China Health and Retirement Longitudinal Study (CHARLS) between 2015 and 2018 to develop and validate this prediction model. Several machine learning algorithms (logistic regression, k-nearest neighbors, naive Bayes, multilayer perceptron, random forest, and XGBoost) were used to assess the 3-year risk of developing disability. The optimal cutoff points and adjustment parameters are explored in the training set, the prediction accuracy of the models is compared in the testing set, and the best-performing models are further interpreted. Results During a 3-year follow-up period, a total of 505 (23.22%) healthy older adult individuals developed disabilities. Among the 43 features examined, the LASSO regression identified 11 features as significant for model establishment. When comparing six different machine learning models on the testing set, the XGBoost model demonstrated the best performance across various evaluation metrics, including the highest area under the ROC curve (0.803), accuracy (0.757), sensitivity (0.790), and F1 score (0.789), while its specificity was 0.712. The decision curve analysis (DCA) indicated showed that XGBoost had the highest net benefit in most of the threshold ranges. Based on the importance of features determined by SHAP (model interpretation method), the top five important features were identified as right-hand grip strength, depressive symptoms, marital status, respiratory function, and age. Moreover, the SHAP summary plot was used to illustrate the positive or negative effects attributed to the features influenced by XGBoost. The SHAP dependence plot explained how individual features affected the output of the predictive model. Conclusion Machine learning-based prediction models can accurately evaluate the likelihood of disability in healthy older adults over a period of 3 years. A combination of XGBoost and SHAP can provide clear explanations for personalized risk prediction and offer a more intuitive understanding of the effect of key features in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三脸茫然完成签到 ,获得积分10
1秒前
ChatGPT完成签到,获得积分10
8秒前
研友完成签到 ,获得积分10
30秒前
fffffffffffffff完成签到 ,获得积分10
33秒前
8R60d8完成签到,获得积分0
38秒前
lunyu完成签到 ,获得积分10
39秒前
坚强志泽完成签到 ,获得积分10
51秒前
俊逸的白梦完成签到 ,获得积分10
55秒前
橘子海完成签到 ,获得积分10
1分钟前
Tianju完成签到,获得积分10
1分钟前
研友_Lmg1gZ完成签到,获得积分10
1分钟前
huazhangchina完成签到 ,获得积分10
1分钟前
高雯完成签到,获得积分10
1分钟前
芝诺的乌龟完成签到 ,获得积分0
1分钟前
张颖完成签到 ,获得积分10
1分钟前
欢呼的茗茗完成签到 ,获得积分10
1分钟前
丹妮完成签到 ,获得积分10
1分钟前
1分钟前
longlonglong完成签到,获得积分10
1分钟前
2分钟前
荔枝波波加油完成签到 ,获得积分10
2分钟前
Danny完成签到 ,获得积分10
2分钟前
Young完成签到 ,获得积分10
2分钟前
郑先生完成签到 ,获得积分10
2分钟前
郑志凡完成签到 ,获得积分10
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
啥也不是完成签到,获得积分10
2分钟前
双眼皮跳蚤完成签到,获得积分10
3分钟前
kehe!完成签到 ,获得积分0
3分钟前
霸霸斌完成签到 ,获得积分10
3分钟前
gmc完成签到 ,获得积分10
3分钟前
谷子完成签到 ,获得积分10
3分钟前
数乱了梨花完成签到 ,获得积分10
3分钟前
寒战完成签到 ,获得积分10
4分钟前
沐浠完成签到 ,获得积分10
4分钟前
salty完成签到 ,获得积分10
4分钟前
桐桐应助123采纳,获得10
4分钟前
Shandongdaxiu完成签到 ,获得积分10
4分钟前
HCKACECE完成签到 ,获得积分10
4分钟前
Vicky完成签到 ,获得积分10
4分钟前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052644
求助须知:如何正确求助?哪些是违规求助? 2709863
关于积分的说明 7418252
捐赠科研通 2354395
什么是DOI,文献DOI怎么找? 1246007
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921