Pavement Distress Detection Using Street View Images Captured via Action Camera

计算机科学 特征提取 编码器 人工智能 目标检测 变压器 特征(语言学) 计算机视觉 模式识别(心理学) 机器学习 工程类 电压 语言学 操作系统 电气工程 哲学
作者
Yu‐Chen Liu,Fang Liu,Wei Liu,Yucheng Huang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 738-747 被引量:10
标识
DOI:10.1109/tits.2023.3306578
摘要

Timely and accurately detection as well as rehabilitation of road surface defects are of utmost importance for ensuring road safety and minimizing maintenance cost. However, the variety of pavement distress types and forms makes it difficult to accurately classify and detect them. To tackle the issue, this paper proposes a novel target detection model YOLO-SST based on YOLOv5 with the improvement in pavement distress features. First, a Shuffle Attention mechanism is introduced in the feature extraction backbone network to enhance the detection ability without significantly increasing the computational cost. Secondly, we add a detection layer and embed Swin-Transformer encoder blocks into the C3 module to capture global and contextual information. Finally, to improve the model's detection ability, transfer learning is employed on a self-made dataset called RDDdect_2023, which consists of street view images captured via a DJI Action camera mounted on the car. Experimental results demonstrate that the YOLO-SST model outperforms YOLOv5 and other target detection models in terms of accuracy, recall rate, and mAP@0.5 value for detecting pavement distresses. This confirms that the YOLO-SST model has stronger feature extraction and fusion capabilities, resulting in better detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助柒柒_BX采纳,获得10
1秒前
1秒前
祝好完成签到,获得积分10
2秒前
领导范儿应助刀客塔范采纳,获得30
3秒前
kris发布了新的文献求助10
4秒前
科研通AI2S应助z派采纳,获得10
5秒前
6秒前
kriswcy完成签到,获得积分20
7秒前
清脆寄容应助祝好采纳,获得20
7秒前
7秒前
CDUT完成签到,获得积分20
8秒前
glj应助KING采纳,获得10
8秒前
伶俐绿海完成签到 ,获得积分10
8秒前
10秒前
11秒前
11秒前
乐乐应助张同学要谦虚采纳,获得10
11秒前
哎呀会飞完成签到,获得积分10
12秒前
了凡完成签到 ,获得积分10
13秒前
搜集达人应助kris采纳,获得10
13秒前
16秒前
16秒前
aaa完成签到,获得积分10
16秒前
kriswcy关注了科研通微信公众号
17秒前
LogeYu发布了新的文献求助10
17秒前
shelemi发布了新的文献求助10
17秒前
18秒前
19秒前
20秒前
常常完成签到,获得积分10
23秒前
23秒前
彭于晏应助王炸采纳,获得20
23秒前
小刘同学发布了新的文献求助10
23秒前
霜满天发布了新的文献求助10
24秒前
wfs完成签到,获得积分10
25秒前
25秒前
香蕉觅云应助liuxh123采纳,获得10
25秒前
yongziwu完成签到,获得积分10
26秒前
你大米哥完成签到 ,获得积分10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796450
求助须知:如何正确求助?哪些是违规求助? 3341711
关于积分的说明 10307271
捐赠科研通 3058290
什么是DOI,文献DOI怎么找? 1678094
邀请新用户注册赠送积分活动 805873
科研通“疑难数据库(出版商)”最低求助积分说明 762838