Machine Learning for Data-Driven Last-Mile Delivery Optimization

计算机科学 背景(考古学) 启发式 机器学习 联营 人工智能 帕累托原理 数据挖掘 数学优化 数学 生物 操作系统 古生物学
作者
Sami Serkan Özarık,Paulo da Costa,Alexandre M. Florio
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (1): 27-44 被引量:13
标识
DOI:10.1287/trsc.2022.0029
摘要

In the context of the Amazon Last-Mile Routing Research Challenge, this paper presents a machine-learning framework for optimizing last-mile delivery routes. Contrary to most routing problems where an objective function is clearly defined, in the real-world setting considered in the challenge, an objective is not explicitly specified and must be inferred from data. Leveraging techniques from machine learning and classical traveling salesman problem heuristics, we propose a “pool and select” algorithm to prescribe high-quality last-mile delivery sequences. In the pooling phase, we exploit structural knowledge acquired from data, such as common entry and exit regions observed in training routes. In the selection phase, we predict the scores of candidate sequences with a high-dimensional, pretrained, and regularized regression model. The score prediction model, which includes a large number of predictor variables such as sequence duration, compliance with time windows, earliness, lateness, and structural similarity to training data, displays good prediction accuracy and guides the selection of efficient delivery sequences. Overall, the framework is able to prescribe competitive delivery routes, as measured on out-of-sample routes across several data sets. Given that desired characteristics of high-quality sequences are learned and not assumed, the proposed framework is expected to generalize well to last-mile applications beyond those immediately foreseen in the challenge. Moreover, the method requires less than three seconds to prescribe a sequence given an instance and, thus, is suitable for very large-scale applications. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems. Funding: This research was funded by The Dutch Research Council (NWO) Data2Move project under [Grant 628.009.013] and the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie [Grant 754462]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0029 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助jing采纳,获得10
1秒前
2秒前
小宇完成签到,获得积分10
3秒前
Sarah完成签到,获得积分20
3秒前
周小鱼发布了新的文献求助10
4秒前
4秒前
合泽河完成签到,获得积分10
5秒前
帅气的藏鸟完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
共享精神应助学姐采纳,获得10
8秒前
小白完成签到,获得积分10
8秒前
平常紫易完成签到,获得积分10
8秒前
10秒前
10秒前
Akim应助研友_5ZlN6L采纳,获得10
11秒前
洛尘完成签到,获得积分10
11秒前
嘟嘟完成签到,获得积分10
12秒前
12秒前
雯十七发布了新的文献求助10
12秒前
12秒前
余不言完成签到,获得积分20
12秒前
雪雾发布了新的文献求助10
13秒前
英俊的铭应助哟哟哟采纳,获得10
13秒前
bkagyin应助哟哟哟采纳,获得10
13秒前
Orange应助哟哟哟采纳,获得30
13秒前
深情安青应助哟哟哟采纳,获得10
13秒前
脑洞疼应助哟哟哟采纳,获得10
13秒前
CodeCraft应助哟哟哟采纳,获得10
13秒前
酷波er应助哟哟哟采纳,获得10
13秒前
上官若男应助哟哟哟采纳,获得10
13秒前
JamesPei应助哟哟哟采纳,获得10
13秒前
13秒前
Damiao完成签到,获得积分10
13秒前
苗月月发布了新的文献求助10
14秒前
贵香鱼发布了新的文献求助10
14秒前
YangSY发布了新的文献求助10
14秒前
苗月月发布了新的文献求助10
14秒前
苗月月发布了新的文献求助10
14秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831845
求助须知:如何正确求助?哪些是违规求助? 3373989
关于积分的说明 10483052
捐赠科研通 3093927
什么是DOI,文献DOI怎么找? 1703212
邀请新用户注册赠送积分活动 819322
科研通“疑难数据库(出版商)”最低求助积分说明 771423