Efficient physics-based learned reconstruction methods for real-time 3D near-field MIMO radar imaging

领域(数学) 雷达 计算机科学 物理 遥感 地质学 电信 数学 纯数学
作者
İrfan Manisalı,Okyanus Oral,Figen S. Öktem
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:144: 104274-104274 被引量:1
标识
DOI:10.1016/j.dsp.2023.104274
摘要

Near-field multiple-input multiple-output (MIMO) radar imaging systems have recently gained significant attention. In this paper, we develop novel non-iterative deep learning-based reconstruction methods for real-time near-field MIMO imaging. The goal is to achieve high image quality with low computational cost at compressive settings. The developed approaches have two stages. In the first approach, physics-based initial stage performs adjoint operation to back-project the measurements to the image-space, and deep neural network (DNN)-based second stage converts the 3D backprojected measurements to a magnitude-only reflectivity image. Since scene reflectivities often have random phase, DNN processes directly the magnitude of the adjoint result. As DNN, 3D U-Net is used to jointly exploit range and cross-range correlations. To comparatively evaluate the significance of exploiting physics in a learning-based approach, two additional approaches that replace the physics-based first stage with fully connected layers are also developed as purely learning-based methods. The performance is also analyzed by changing the DNN architecture for the second stage to include complex-valued processing (instead of magnitude-only processing), 2D convolution kernels (instead of 3D), and ResNet architecture (instead of U-Net). Moreover, we develop a synthesizer to generate large-scale dataset for training with 3D extended targets. We illustrate the performance through experimental data and extensive simulations. The results show the effectiveness of the developed physics-based learned reconstruction approach in terms of both run-time and image quality at highly compressive settings. Our source codes and dataset are made available at GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助小全采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Migtyaaron发布了新的文献求助10
6秒前
6秒前
深情安青应助ZXB采纳,获得30
7秒前
张豪杰完成签到 ,获得积分10
8秒前
王线性完成签到,获得积分10
11秒前
爱小妍发布了新的文献求助10
12秒前
14秒前
14秒前
HuaqingLiu完成签到,获得积分10
15秒前
Migtyaaron完成签到,获得积分10
16秒前
星海妖魂发布了新的文献求助10
17秒前
17秒前
ZXB发布了新的文献求助30
19秒前
caomao完成签到,获得积分10
19秒前
22秒前
蔷薇完成签到,获得积分10
25秒前
开放映冬完成签到,获得积分10
25秒前
qinghong发布了新的文献求助10
26秒前
顾矜应助下雨这天采纳,获得10
26秒前
大胆的忆安完成签到 ,获得积分10
27秒前
创新完成签到 ,获得积分10
29秒前
abc完成签到 ,获得积分10
29秒前
33秒前
CipherSage应助CC采纳,获得10
34秒前
qinghong完成签到,获得积分10
35秒前
沉静智宸完成签到 ,获得积分10
36秒前
36秒前
花蝴蝶完成签到 ,获得积分10
38秒前
xuli-888完成签到,获得积分10
38秒前
car子完成签到 ,获得积分10
40秒前
Jes发布了新的文献求助30
40秒前
畅快的长颈鹿完成签到,获得积分10
46秒前
46秒前
克泷完成签到 ,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779565
求助须知:如何正确求助?哪些是违规求助? 3325025
关于积分的说明 10221059
捐赠科研通 3040157
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522