Inverse design of electromagnetically induced transparency metamaterials based on generative adversarial networks

鉴别器 计算机科学 超材料 正规化(语言学) 反向 规范化(社会学) 算法 发电机(电路理论) 人工智能 数学 物理 光学 探测器 电信 功率(物理) 几何学 量子力学 社会学 人类学
作者
Handong Li,Jianwei Wang,Cheng‐Zhi Qin,Tao Lei,Fushan Lu,Qi Li
出处
期刊:Journal of Physics D [Institute of Physics]
卷期号:57 (3): 035004-035004
标识
DOI:10.1088/1361-6463/ad0399
摘要

Abstract The traditional metamaterial design process usually relies on some knowledge experience and simulation tools to continuously optimize by trial and error, until the simulation results meet the requirements. But this trial-and-error approach could be more unstable and time-consuming, especially when there are too many material parameters or the optimization interval is too large. This paper proposes a multi-prediction model for metamaterials, Improved-StarGan based on StarGan with semi-supervised learning, and use an EIT structure as a validation object. The generator can output various material structures according to the input spectrum extremes, and the discriminator can forward predict the spectrum extremes based on the input material structure parameters. Spectral normalization, gradient penalty, and hidden space distance regularization are also used to increase the diversity of its output data at the expense of sacrificing a part of the accuracy of the generator. During model training, the loss values of the training and validation sets converge normally and end up in a small range. Finally, the data was extracted from the test set for model prediction and simulation comparison. Meanwhile, a sample of one of the predicted structures is tested. All the results show that the model predictions have low error and high confidence. the results demonstrate that the method is effective in both inverse multiple structure and forward prediction of metamaterials, which provides a new design idea for the structural design of metamaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助雾霭迷茫采纳,获得10
刚刚
典雅雁梅完成签到,获得积分10
刚刚
1秒前
体贴绮露发布了新的文献求助10
1秒前
WWW完成签到,获得积分10
1秒前
1秒前
拜拜肉拜拜完成签到 ,获得积分10
2秒前
都找到了发布了新的文献求助10
2秒前
zhy117820完成签到,获得积分10
2秒前
kysl完成签到,获得积分10
2秒前
英姑应助Bella采纳,获得10
2秒前
机灵的囧发布了新的文献求助10
3秒前
怕黑的无招完成签到,获得积分10
3秒前
研友_LaOyQZ完成签到,获得积分10
3秒前
4秒前
沉默的婴发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
甜美乐菱完成签到,获得积分10
5秒前
cycl发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
orixero应助lwzx采纳,获得30
7秒前
无私夜雪完成签到,获得积分20
7秒前
梁大帅发布了新的文献求助10
8秒前
CodeCraft应助哈哈哈采纳,获得10
8秒前
8秒前
布丁大王发布了新的文献求助10
8秒前
内向的听云完成签到 ,获得积分10
8秒前
了解完成签到,获得积分20
8秒前
hahaha发布了新的文献求助10
8秒前
8秒前
终成完成签到,获得积分10
9秒前
9秒前
双shuang发布了新的文献求助10
9秒前
等待白安发布了新的文献求助10
10秒前
mouxq发布了新的文献求助100
10秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4049364
求助须知:如何正确求助?哪些是违规求助? 3587318
关于积分的说明 11399067
捐赠科研通 3313808
什么是DOI,文献DOI怎么找? 1822987
邀请新用户注册赠送积分活动 894919
科研通“疑难数据库(出版商)”最低求助积分说明 816617