A many-objective optimization evolutionary algorithm based on hyper-dominance degree

进化算法 计算机科学 数学优化 趋同(经济学) 水准点(测量) 最优化问题 人口 进化计算 选择(遗传算法) 学位(音乐) 优势(遗传学) 算法 数学 人工智能 人口学 社会学 经济增长 生物化学 经济 化学 声学 地理 物理 大地测量学 基因
作者
Zhe Liu,Fei Han,Qing-Hua Ling,Henry Han,Jing Jiang
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:83: 101411-101411 被引量:11
标识
DOI:10.1016/j.swevo.2023.101411
摘要

Compared with multi-objective optimization, solving many-objective optimization problems usually require more strong selection pressure. However, too strong selection pressure usually leads to the loss of diversity, while insufficient selection pressure often results in the failure of convergence. How to control the selection pressure to balance convergence and diversity remains a challenge in many-objective optimization. To tackle this challenge, a many-objective optimization evolutionary algorithm based on the hyper-dominance degree is proposed in this paper. In the proposed algorithm, the convergence of each solution is quantified by hyper-dominance degree so that the convergence of the population can be controlled by setting a tolerance to screen solutions. To better balance the convergence and the diversity, a tolerance adjusting strategy is designed to control selection pressure during optimization, an improved reference vectors-based diversity preservation strategy is proposed to make the solutions well-distributed in the objective space, and a population reselection strategy based on hyper-dominance degree is proposed to further improve the convergence. The experimental results on various benchmark problems with up to 20 objectives verify that the proposed algorithm outperforms the state-of-the-art peer many-objective optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄之又玄完成签到,获得积分10
刚刚
lishihao完成签到,获得积分10
刚刚
刚刚
骆欣怡完成签到 ,获得积分10
1秒前
凌凌漆应助噜噜噜采纳,获得10
1秒前
科研小白完成签到,获得积分20
1秒前
852应助xxc采纳,获得10
1秒前
cyw完成签到,获得积分20
2秒前
乐观小之应助科研通管家采纳,获得30
2秒前
乐观小之应助科研通管家采纳,获得10
2秒前
qing应助科研通管家采纳,获得10
2秒前
大秦发布了新的文献求助10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
知还发布了新的文献求助10
2秒前
2秒前
乐观小之应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
4秒前
熊宜浓发布了新的文献求助10
5秒前
7秒前
liang发布了新的文献求助10
8秒前
SYLH应助lza采纳,获得20
8秒前
黑虎完成签到 ,获得积分10
9秒前
10秒前
深情安青应助科研小白采纳,获得10
12秒前
wwwu完成签到,获得积分10
12秒前
Slemon完成签到,获得积分10
13秒前
小二郎应助研友_LwlAgn采纳,获得10
13秒前
孙非完成签到,获得积分10
15秒前
15秒前
ei完成签到,获得积分10
20秒前
科研小秦完成签到,获得积分10
24秒前
26秒前
26秒前
FZU_ChyL完成签到 ,获得积分10
28秒前
研友_LwlAgn发布了新的文献求助10
29秒前
来日昭昭应助大秦采纳,获得10
29秒前
Ruiruirui发布了新的文献求助10
30秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838438
求助须知:如何正确求助?哪些是违规求助? 3380785
关于积分的说明 10515798
捐赠科研通 3100383
什么是DOI,文献DOI怎么找? 1707474
邀请新用户注册赠送积分活动 821754
科研通“疑难数据库(出版商)”最低求助积分说明 772930