SeqPredNN: a neural network that generates protein sequences that fold into specified tertiary structures

蛋白质结构预测 蛋白质数据库 蛋白质设计 结构基因组学 蛋白质结构 蛋白质三级结构 蛋白质数据库 蛋白质结构数据库 计算生物学 线程(蛋白质序列) 折叠(高阶函数) 蛋白质折叠 蛋白质测序 蛋白质功能预测 蛋白质工程 人工神经网络 序列(生物学) 计算机科学 蛋白质二级结构 肽序列 生物 人工智能 遗传学 蛋白质功能 序列数据库 生物化学 基因 程序设计语言
作者
F. Adriaan Lategan,Caroline Schreiber,Hugh-George Patterton
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12859-023-05498-4
摘要

Abstract Background The relationship between the sequence of a protein, its structure, and the resulting connection between its structure and function, is a foundational principle in biological science. Only recently has the computational prediction of protein structure based only on protein sequence been addressed effectively by AlphaFold, a neural network approach that can predict the majority of protein structures with X-ray crystallographic accuracy. A question that is now of acute relevance is the “inverse protein folding problem”: predicting the sequence of a protein that folds into a specified structure. This will be of immense value in protein engineering and biotechnology, and will allow the design and expression of recombinant proteins that can, for instance, fold into specified structures as a scaffold for the attachment of recombinant antigens, or enzymes with modified or novel catalytic activities. Here we describe the development of SeqPredNN, a feed-forward neural network trained with X-ray crystallographic structures from the RCSB Protein Data Bank to predict the identity of amino acids in a protein structure using only the relative positions, orientations, and backbone dihedral angles of nearby residues. Results We predict the sequence of a protein expected to fold into a specified structure and assess the accuracy of the prediction using both AlphaFold and RoseTTAFold to computationally generate the fold of the derived sequence. We show that the sequences predicted by SeqPredNN fold into a structure with a median TM-score of 0.638 when compared to the crystal structure according to AlphaFold predictions, yet these sequences are unique and only 28.4% identical to the sequence of the crystallized protein. Conclusions We propose that SeqPredNN will be a valuable tool to generate proteins of defined structure for the design of novel biomaterials, pharmaceuticals, catalysts, and reporter systems. The low sequence identity of its predictions compared to the native sequence could prove useful for developing proteins with modified physical properties, such as water solubility and thermal stability. The speed and ease of use of SeqPredNN offers a significant advantage over physics-based protein design methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
镜哥完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
Millie发布了新的文献求助10
2秒前
小迪完成签到,获得积分20
2秒前
Ava应助大海是大海采纳,获得30
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
EliGolden发布了新的文献求助10
4秒前
以甲引丁发布了新的文献求助10
4秒前
cloverdown发布了新的文献求助30
5秒前
学术蝗虫发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
7秒前
谷粱靖完成签到,获得积分10
7秒前
8秒前
8秒前
美丽大肚腩完成签到,获得积分10
9秒前
9秒前
智库完成签到,获得积分20
9秒前
JamesPei应助周二w采纳,获得10
10秒前
11秒前
12秒前
zx666完成签到,获得积分10
13秒前
aaatan发布了新的文献求助10
13秒前
科研通AI6.1应助Literaturecome采纳,获得10
13秒前
kkkkkkkk发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
小孩子的白日梦完成签到,获得积分10
14秒前
14秒前
沉静的碧琴完成签到 ,获得积分10
15秒前
15秒前
16秒前
吴吴温欣完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770111
求助须知:如何正确求助?哪些是违规求助? 5582948
关于积分的说明 15423385
捐赠科研通 4903664
什么是DOI,文献DOI怎么找? 2638315
邀请新用户注册赠送积分活动 1586143
关于科研通互助平台的介绍 1541287