SeqPredNN: a neural network that generates protein sequences that fold into specified tertiary structures

蛋白质结构预测 蛋白质数据库 蛋白质设计 结构基因组学 蛋白质结构 蛋白质三级结构 蛋白质数据库 蛋白质结构数据库 计算生物学 线程(蛋白质序列) 折叠(高阶函数) 蛋白质折叠 蛋白质测序 蛋白质功能预测 蛋白质工程 人工神经网络 序列(生物学) 计算机科学 蛋白质二级结构 肽序列 生物 人工智能 遗传学 蛋白质功能 序列数据库 生物化学 基因 程序设计语言
作者
F. Adriaan Lategan,Caroline Schreiber,Hugh-George Patterton
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12859-023-05498-4
摘要

Abstract Background The relationship between the sequence of a protein, its structure, and the resulting connection between its structure and function, is a foundational principle in biological science. Only recently has the computational prediction of protein structure based only on protein sequence been addressed effectively by AlphaFold, a neural network approach that can predict the majority of protein structures with X-ray crystallographic accuracy. A question that is now of acute relevance is the “inverse protein folding problem”: predicting the sequence of a protein that folds into a specified structure. This will be of immense value in protein engineering and biotechnology, and will allow the design and expression of recombinant proteins that can, for instance, fold into specified structures as a scaffold for the attachment of recombinant antigens, or enzymes with modified or novel catalytic activities. Here we describe the development of SeqPredNN, a feed-forward neural network trained with X-ray crystallographic structures from the RCSB Protein Data Bank to predict the identity of amino acids in a protein structure using only the relative positions, orientations, and backbone dihedral angles of nearby residues. Results We predict the sequence of a protein expected to fold into a specified structure and assess the accuracy of the prediction using both AlphaFold and RoseTTAFold to computationally generate the fold of the derived sequence. We show that the sequences predicted by SeqPredNN fold into a structure with a median TM-score of 0.638 when compared to the crystal structure according to AlphaFold predictions, yet these sequences are unique and only 28.4% identical to the sequence of the crystallized protein. Conclusions We propose that SeqPredNN will be a valuable tool to generate proteins of defined structure for the design of novel biomaterials, pharmaceuticals, catalysts, and reporter systems. The low sequence identity of its predictions compared to the native sequence could prove useful for developing proteins with modified physical properties, such as water solubility and thermal stability. The speed and ease of use of SeqPredNN offers a significant advantage over physics-based protein design methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘎嘎发布了新的文献求助10
刚刚
悠悠梦完成签到,获得积分10
刚刚
小蓝完成签到,获得积分10
1秒前
1秒前
李哈哈应助一只眠羊采纳,获得10
1秒前
2秒前
喜悦完成签到,获得积分10
2秒前
2秒前
搜集达人应助dfsdgyu采纳,获得30
3秒前
欧阳完成签到 ,获得积分10
3秒前
晓晓来了发布了新的文献求助10
4秒前
火火发布了新的文献求助20
4秒前
搜集达人应助小年采纳,获得10
4秒前
MIAOMIAO发布了新的文献求助10
5秒前
张泽崇发布了新的文献求助10
5秒前
Silver丨Tear应助默默的巧荷采纳,获得10
6秒前
6秒前
烛光冰纤发布了新的文献求助10
6秒前
bkagyin应助PAUL采纳,获得30
6秒前
南初发布了新的文献求助20
7秒前
kind33发布了新的文献求助10
7秒前
8秒前
huan完成签到,获得积分10
8秒前
原野完成签到,获得积分20
8秒前
CodeCraft应助冷傲的夕阳采纳,获得10
9秒前
大个应助四喜小木牌采纳,获得10
10秒前
11秒前
听说完成签到,获得积分20
11秒前
恶恶么v发布了新的文献求助10
12秒前
迷路语兰完成签到,获得积分10
13秒前
14秒前
冷静的奇迹完成签到,获得积分10
15秒前
传奇3应助赛韓吧采纳,获得10
15秒前
hwzzyc完成签到,获得积分10
17秒前
听说发布了新的文献求助10
17秒前
原野发布了新的文献求助10
18秒前
明朗发布了新的文献求助10
18秒前
Min发布了新的文献求助10
19秒前
含蓄含烟发布了新的文献求助50
19秒前
hanqing发布了新的文献求助10
19秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Finite Groups: An Introduction 800
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3909190
求助须知:如何正确求助?哪些是违规求助? 3454986
关于积分的说明 10881633
捐赠科研通 3180889
什么是DOI,文献DOI怎么找? 1757474
邀请新用户注册赠送积分活动 850210
科研通“疑难数据库(出版商)”最低求助积分说明 791989