已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Comparative Study of LSTM and Temporal Convolutional Network Models for Semisubmersible Platform Wave Runup Prediction

卷积神经网络 计算机科学 人工智能
作者
Yan Li,Longfei Xiao,Handi Wei,Deyu Li,Xu Li
出处
期刊:Journal of offshore mechanics and Arctic engineering [ASM International]
卷期号:147 (1)
标识
DOI:10.1115/1.4063266
摘要

Abstract Wave runup prediction is necessary for offshore structure designs and early warnings. Data-driven methods based on machine learning have inspired reduced-order solutions for wave–structure interaction problems. This study provides the quantification of deep learning algorithms’ potential for wave runup prediction. Two prominent deep learning models were utilized to predict the wave runups along the fore column of semisubmersible under head seas. The long short-term memory (LSTM) and the temporal convolutional networks (TCNs) were comprehensively compared based on the datasets from a model test carried out in the deep ocean basin. The LSTM and TCN model structures were optimized to compare prediction accuracy and computational complexity reasonably. The results reveal that (1) both developed TCN and LSTM models had a satisfied prediction accuracy of over 90%. Their predictions were extended to 10 s into the future with accuracies over 80% and 45%, respectively. (2) With the noise-extended datasets, the LSTM model was robust to noises, while the TCN model showed better prediction performance on the extreme wave runup events. (3) The incident wave and dominant rotation provided the major information for wave runup prediction. TCN and LSTM models’ prediction accuracies were 91.5% and 89.3% based on the simplified input tensors composed of incident wave and pitch. The comparison showed the great potential of the TCN model to predict the nonlinear wave runup with less time and memory costs. The input tensors’ design and optimization based on physical understanding also play a significant role in the prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
karna发布了新的文献求助10
1秒前
简单思萱完成签到,获得积分10
6秒前
小全发布了新的文献求助30
6秒前
10秒前
12秒前
WaNgZY发布了新的文献求助10
12秒前
大模型应助李十九采纳,获得10
15秒前
科研通AI5应助11112321321采纳,获得10
15秒前
16秒前
慌慌完成签到 ,获得积分10
18秒前
LZY发布了新的文献求助10
18秒前
20秒前
淡烟流水发布了新的文献求助10
21秒前
ding应助研友_Zzrx6Z采纳,获得10
22秒前
22秒前
迦鳞发布了新的文献求助30
25秒前
搜集达人应助LZY采纳,获得10
26秒前
11112321321发布了新的文献求助10
27秒前
LeungYM完成签到 ,获得积分10
28秒前
paltahun发布了新的文献求助20
29秒前
30秒前
搜集达人应助karna采纳,获得10
30秒前
31秒前
LZY完成签到,获得积分10
31秒前
WFF完成签到,获得积分10
32秒前
科研通AI5应助Forever采纳,获得10
32秒前
33秒前
mm完成签到 ,获得积分10
33秒前
qin发布了新的文献求助10
36秒前
38秒前
君寻完成签到 ,获得积分10
38秒前
绝不拖延发布了新的文献求助10
43秒前
46秒前
47秒前
Herr_Zheng完成签到,获得积分10
48秒前
49秒前
sandy发布了新的文献求助30
49秒前
nenoaowu发布了新的文献求助10
51秒前
大个应助lena采纳,获得10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Technologies supporting mass customization of apparel: A pilot project 300
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780726
求助须知:如何正确求助?哪些是违规求助? 3326224
关于积分的说明 10226255
捐赠科研通 3041293
什么是DOI,文献DOI怎么找? 1669330
邀请新用户注册赠送积分活动 799040
科研通“疑难数据库(出版商)”最低求助积分说明 758723