Artificial intelligence-enabled digital transformation in elderly healthcare field: Scoping review

医疗保健 领域(数学) 人口老龄化 知识管理 计算机科学 数据科学 人工智能应用 人口 人工智能 工程类 医学 政治学 数学 环境卫生 法学 纯数学
作者
Ching-Hung Lee,Chang Wang,Xiaojing Fan,Fan Li,Chun‐Hsien Chen
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:55: 101874-101874 被引量:20
标识
DOI:10.1016/j.aei.2023.101874
摘要

As the ageing population grows continuously, traditional healthcare providers are experiencing difficulty in keeping up with changing and unpredictable demands as well as rising customer expectations. Artificial intelligence (AI) technology is quickly becoming a potent instrument for accelerating the digital transformation in the aged healthcare sector to deal with the high cost, dynamic nature, and unpredictability of the user environment. In this study, we used a thorough literature analysis to examine the advancements brought about by AI in the field of healthcare for the elderly. The study analyzed AI-enabled elderly healthcare-related articles that were published between 2000 and 2021. In total, 63 articles were extracted from the Web of Science. The review revealed that several elderly healthcare fields have developed and implemented AI-enabled systems and scenarios. It also revealed that AI technology has a substantial positive impact on the elderly healthcare field and leads to significant improvements in this field. The foundation for upcoming studies in the area of aged healthcare is laid forth by this literature review. The findings provide practitioners with crucial references for using artificial intelligence technology in elderly healthcare as well as suggestions for future research topics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
天涯完成签到,获得积分10
2秒前
2秒前
seven关注了科研通微信公众号
2秒前
4秒前
ding应助巴拉巴拉采纳,获得10
4秒前
杨旸发布了新的文献求助10
4秒前
石一完成签到,获得积分10
5秒前
酷波er应助姜伟采纳,获得10
6秒前
6秒前
ls完成签到,获得积分10
6秒前
球球w发布了新的文献求助30
7秒前
小熊发布了新的文献求助10
8秒前
Eurus发布了新的文献求助30
8秒前
jerry完成签到,获得积分10
10秒前
朝朝完成签到,获得积分10
12秒前
13秒前
14秒前
nenoaowu发布了新的文献求助30
14秒前
王翎力完成签到,获得积分10
15秒前
77关注了科研通微信公众号
15秒前
Xuan_Y完成签到,获得积分10
15秒前
巅峰囚冰完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
祁依欧欧完成签到,获得积分10
17秒前
18秒前
吃老鼠的鱼完成签到,获得积分10
22秒前
XXXXX完成签到 ,获得积分10
22秒前
zasideler完成签到,获得积分10
23秒前
bob发布了新的文献求助10
23秒前
球球w完成签到,获得积分10
24秒前
Himanny发布了新的文献求助30
26秒前
大卷应助rgu采纳,获得10
26秒前
烟花应助mmw采纳,获得10
27秒前
给好评发布了新的文献求助20
28秒前
JamesPei应助斯丹康采纳,获得10
31秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838514
求助须知:如何正确求助?哪些是违规求助? 3380889
关于积分的说明 10516101
捐赠科研通 3100459
什么是DOI,文献DOI怎么找? 1707506
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772947