现存分类群
重金属
金属
生化工程
环境科学
材料科学
工程类
化学
环境化学
进化生物学
生物
冶金
作者
Ying Zhou,Yuanyuan Tang,Changzhong Liao,Minhua Su,Kaimin Shih
标识
DOI:10.1016/j.jhazmat.2023.130977
摘要
Heavy metal pollution has resulted in serious environmental damage and raised significant public health concerns. One potential solution in terminal waste treatment is to structurally incorporate and immobilize heavy metals in some robust frameworks. Yet extant research offers a limited perspective on how metal incorporation behavior and stabilization mechanisms can effectively manage heavy metal-laden waste. This review sets forth detailed research on the feasibility of treatment strategies to incorporate heavy metals into structural frameworks; this paper also compares common methods and advanced characterization techniques for identifying metal stabilization mechanisms. Furthermore, this review analyses the typical hosting structures for heavy metal contaminants and metal incorporation behavior, highlighting the importance of structural features on metal speciation and immobilization efficiency. Lastly, this paper systematically summarizes key factors (i.e., intrinsic properties and external conditions) affecting metal incorporation behavior. Drawing on these impactful findings, the paper discusses future directions in the design of waste forms that efficiently, effectively treat heavy metal contaminants. By examining tailored composition−structure−property relationships in metal immobilization strategies, this review reveals possible solutions for crucial challenges in waste treatment and enhances the development of structural incorporation strategies for heavy metal immobilization in environmental applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI