肌萎缩侧索硬化
C9orf72
神经退行性变
生物
剪接体
神经科学
疾病
SOD1
表型
运动神经元
生物信息学
基因
遗传学
医学
RNA剪接
三核苷酸重复扩增
核糖核酸
病理
等位基因
脊髓
作者
Gabriel Linares,Yichen Li,Wen-Hsuan Chang,Jasper Rubin-Sigler,Stacee Mendonca,Sarah Hong,Yunsun Eoh,Wenxuan Guo,Yi‐Hsuan Huang,Jonathan Chang,Sharon Tu,Nomongo Dorjsuren,Manuel Santana,Shu‐Ting Hung,Johnny Yu,Joscany Perez,Michael Chickering,Tze-Yuan Cheng,Chi‐Chou Huang,Shih-Jong James Lee
出处
期刊:Cell Stem Cell
[Elsevier BV]
日期:2023-02-01
卷期号:30 (2): 171-187.e14
被引量:16
标识
DOI:10.1016/j.stem.2023.01.005
摘要
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by many diverse genetic etiologies. Although therapeutics that specifically target causal mutations may rescue individual types of ALS, such approaches cannot treat most patients since they have unknown genetic etiology. Thus, there is a critical need for therapeutic strategies that rescue multiple forms of ALS. Here, we combine phenotypic chemical screening on a diverse cohort of ALS patient-derived neurons with bioinformatic analysis of large chemical and genetic perturbational datasets to identify broadly effective genetic targets for ALS. We show that suppressing the gene-encoding, spliceosome-associated factor SYF2 alleviates TDP-43 aggregation and mislocalization, improves TDP-43 activity, and rescues C9ORF72 and causes sporadic ALS neuron survival. Moreover, Syf2 suppression ameliorates neurodegeneration, neuromuscular junction loss, and motor dysfunction in TDP-43 mice. Thus, suppression of spliceosome-associated factors such as SYF2 may be a broadly effective therapeutic approach for ALS.
科研通智能强力驱动
Strongly Powered by AbleSci AI