DATA AUGMENTATION FOR FMRI-BASED FUNCTIONAL CONNECTIVITY AND ITS APPLICATION TO CROSS-SITE ADHD CLASSIFICATION

功能磁共振成像 人工智能 计算机科学 模式识别(心理学) 滑动窗口协议 特征(语言学) 神经影像学 卷积神经网络 机器学习 窗口(计算) 心理学 语言学 哲学 神经科学 精神科 生物 操作系统
作者
Shengbing Pei,Chaoqun Wang,Shuai Cao,Zhao Lv
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:21
标识
DOI:10.1109/tim.2022.3232670
摘要

Functional magnetic resonance imaging (fMRI) is an emerging neuroimaging modality that is widely used to study brain function and disorders due to its advantages of non-invasiveness, no radiation damage, and high spatial resolution. Existing studies have focused on fMRI-based recognition models to help diagnose brain disorders. However, due to the high cost of fMRI data acquisition and labeling, the amount of fMRI data is usually small, which largely limits the performance of recognition models. In addition, cross-site classification is always a challenge in fMRI study, because the heterogeneity of data collection at different sites increases the complexity and diversity of the data distribution, making the cross-site classification less robust than site-specific classification. In this paper, we propose three data augmentation methods based on functional connectivity networks (FCNs) of fMRI data, aided by a deep feature fusion method, for automatic disease identification. Firstly, Gaussian noise method, Mixup method, and sliding window method are proposed to effectively augment FCN data, respectively, this can balance the variability of sample distribution. Secondly, convolution neural network and graph attention network are separately employed to extract local and global features from FCN. Finally, the two kinds of features are integrated to classify subjects. The experimental results on the ADHD-200 dataset indicate that: (1) the data augmentation methods can effectively improve identification performance, in particular, the sliding window method performs best; (2) the cross-site attention deficit and hyperactivity disorder (ADHD) classification is improved by combining the data augmentation method of sliding window and deep feature fusion method; (3) the rationality of data augmentation for FCNs is explained by visualizing the hidden fused features with t-stochastic neighborhood embedding algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助六六采纳,获得10
刚刚
芜湖起飞完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
orixero应助耶?采纳,获得10
3秒前
3秒前
国足预备员完成签到 ,获得积分10
4秒前
Jason完成签到,获得积分10
4秒前
桐桐应助chen采纳,获得10
5秒前
Zachary完成签到,获得积分10
6秒前
DUDU发布了新的文献求助10
7秒前
WELXCNK完成签到,获得积分10
7秒前
大力如松发布了新的文献求助10
8秒前
颜梦玉完成签到,获得积分20
8秒前
大知闲闲完成签到 ,获得积分10
9秒前
9秒前
10秒前
鲁滨逊完成签到 ,获得积分10
11秒前
11秒前
二世小卒完成签到 ,获得积分0
12秒前
Lip完成签到,获得积分10
14秒前
颜梦玉发布了新的文献求助20
14秒前
蘑菇完成签到 ,获得积分20
14秒前
NexusExplorer应助积极的睫毛采纳,获得10
14秒前
Spiderman发布了新的文献求助10
16秒前
洋溢完成签到,获得积分10
17秒前
17秒前
黄小静发布了新的文献求助10
17秒前
xu完成签到 ,获得积分10
18秒前
斜阳完成签到 ,获得积分10
19秒前
19秒前
王迪完成签到,获得积分10
19秒前
艺艺子完成签到,获得积分10
20秒前
菜就多练完成签到,获得积分10
21秒前
热情蜗牛完成签到 ,获得积分10
21秒前
chen发布了新的文献求助10
21秒前
bb完成签到,获得积分10
21秒前
21秒前
欢呼的茗茗完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Bacillus subtilis and Other Gram‐Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4852514
求助须知:如何正确求助?哪些是违规求助? 4150652
关于积分的说明 12858267
捐赠科研通 3899053
什么是DOI,文献DOI怎么找? 2142743
邀请新用户注册赠送积分活动 1162509
关于科研通互助平台的介绍 1062969