已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Disentangled Representations Learning for Multi-target Cross-domain Recommendation

计算机科学 成对比较 领域(数学分析) 任务(项目管理) 钥匙(锁) 光学(聚焦) 领域知识 推荐系统 人工智能 机器学习 情报检索 数学分析 数学 管理 计算机安全 物理 光学 经济
作者
Xiaobo Guo,Shaoshuai Li,Naicheng Guo,Jiangxia Cao,Xiaolei Liu,Qiongxu Ma,Runsheng Gan,Yunan Zhao
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:41 (4): 1-27 被引量:28
标识
DOI:10.1145/3572835
摘要

Data sparsity has been a long-standing issue for accurate and trustworthy recommendation systems (RS). To alleviate the problem, many researchers pay much attention to cross-domain recommendation (CDR), which aims at transferring rich knowledge from related source domains to enhance the recommendation performance of sparse target domain. To reach the knowledge transferring purpose, recent CDR works always focus on designing different pairwise directed or undirected information transferring strategies between source and target domains. However, such pairwise transferring idea is difficult to adapt to multi-target CDR scenarios directly, e.g., transferring knowledge between multiple domains and improving their performance simultaneously, as such strategies may lead the following issues: (1) When the number of domains increases, the number of transferring modules will grow exponentially, which causes heavy computation complexity. (2) A single pairwise transferring module could only capture the relevant information of two domains, but ignores the correlated information of other domains, which may limit the transferring effectiveness. (3) When a sparse domain serves as the source domain during the pairwise transferring, it would easily leads the negative transfer problem, and the untrustworthy information may hurt the target domain recommendation performance. In this article, we consider the key challenge of the multi-target CDR task: How to identify the most valuable trustworthy information over multiple domains and transfer such information efficiently to avoid the negative transfer problem? To fulfill the above challenge, we propose a novel end-to-end model termed as DR-MTCDR , standing for D isentangled R epresentations learning for M ulti- T arget CDR . DR-MTCDR aims at transferring the trustworthy domain-shared information across domains, which has the two major advantages in both efficiency and effectiveness: (1) For efficiency, DR-MTCDR utilizes a unified module on all domains to capture disentangled domain-shared information and domain-specific information, which could support all domain recommendation and be insensitive to the number of domains. (2) For effectiveness, based on the disentangled domain-shared and domain-specific information, DR-MTCDR has the capability to lead positive effect and make trustworthy recommendation for each domain. Empirical evaluations on datasets from both public datasets and real-world large-scale financial datasets have shown that the proposed framework outperforms other state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daidai完成签到,获得积分20
刚刚
2秒前
帅帅发布了新的文献求助10
3秒前
5秒前
小硕完成签到,获得积分10
5秒前
hua完成签到,获得积分10
6秒前
任鹰完成签到,获得积分10
6秒前
6秒前
6秒前
okko完成签到,获得积分20
6秒前
caisongliang发布了新的文献求助10
8秒前
8秒前
任鹰发布了新的文献求助10
10秒前
虚心完成签到 ,获得积分10
12秒前
小硕发布了新的文献求助10
13秒前
熊子文完成签到 ,获得积分10
14秒前
15秒前
管恩杰发布了新的文献求助10
20秒前
21秒前
小马甲应助天真的棒球采纳,获得50
24秒前
李爱国应助铮铮铁骨采纳,获得10
26秒前
27秒前
忧郁的寻冬完成签到,获得积分10
27秒前
大个应助花千河采纳,获得10
28秒前
28秒前
华老五完成签到,获得积分10
31秒前
彼岸发布了新的文献求助10
32秒前
35秒前
科研通AI5应助太叔十三采纳,获得10
39秒前
he发布了新的文献求助30
40秒前
所所应助暗鲨猫猫头采纳,获得10
40秒前
Rain发布了新的文献求助10
42秒前
景安白完成签到 ,获得积分10
43秒前
suliang应助mingjiang采纳,获得10
44秒前
李爱国应助帅帅采纳,获得10
49秒前
50秒前
传奇3应助Rain采纳,获得10
51秒前
54秒前
55秒前
太叔十三发布了新的文献求助10
55秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840592
求助须知:如何正确求助?哪些是违规求助? 3382626
关于积分的说明 10525423
捐赠科研通 3102331
什么是DOI,文献DOI怎么找? 1708767
邀请新用户注册赠送积分活动 822670
科研通“疑难数据库(出版商)”最低求助积分说明 773472