排名(信息检索)
计算机科学
人工智能
秩(图论)
匹配(统计)
数学
组合数学
统计
作者
Haocong Rao,Yuan Li,Chunyan Miao
标识
DOI:10.1109/lsp.2022.3212634
摘要
Person re-identification (re-ID) as a retrieval task often utilizes a re-ranking model to improve performance. Existing re-ranking methods are typically designed for conventional person re-ID with RGB images, while skeleton representation re-ranking for skeleton-based person re-ID still remains to be explored. To fill this gap, we revisit the $k$ -reciprocal distance re-ranking model in this letter, and propose a generic re-ranking method that exploits the salient skeleton features to perform $k$ -reciprocal distance encoding for skeleton-based person re-ID re-ranking. In particular, we devise the skeleton sequence pooling to aggregate the most salient features of skeletons within a sequence, and combine both original Euclidean distance and $k$ -reciprocal distance to re-rank the skeleton sequence representations for person re-ID. Furthermore, we propose the context-based Rank-1 voting that jointly exploits the initial ranking list and re-ranking list to vote for the top candidate to enhance the Rank-1 matching. Extensive experiments on three public benchmarks demonstrate that our approach can effectively re-rank different state-of-the-art skeleton representations and significantly improve their person re-ID performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI