Depression recognition using a proposed speech chain model fusing speech production and perception features

计算机科学 声道 语音识别 感知 Mel倒谱 支持向量机 人工智能 言语感知 卷积神经网络 特征提取 模式识别(心理学) 自然语言处理 心理学 神经科学
作者
Ming‐Hao Du,Shuang Liu,Tao Wang,Wenquan Zhang,Yufeng Ke,Long Chen,Dong Ming
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:323: 299-308 被引量:21
标识
DOI:10.1016/j.jad.2022.11.060
摘要

Increasing depression patients puts great pressure on clinical diagnosis. Audio-based diagnosis is a helpful auxiliary tool for early mass screening. However, current methods consider only speech perception features, ignoring patients' vocal tract changes, which may partly result in the poor recognition.This work proposes a novel machine speech chain model for depression recognition (MSCDR) that can capture text-independent depressive speech representation from the speaker's mouth to the listener's ear to improve recognition performance. In the proposed MSCDR, linear predictive coding (LPC) and Mel-frequency cepstral coefficients (MFCC) features are extracted to describe the processes of speech generation and of speech perception, respectively. Then, a one-dimensional convolutional neural network and a long short-term memory network sequentially capture intra- and inter-segment dynamic depressive features for classification.We tested the MSCDR on two public datasets with different languages and paradigms, namely, the Distress Analysis Interview Corpus-Wizard of Oz and the Multi-modal Open Dataset for Mental-disorder Analysis. The accuracy of the MSCDR on the two datasets was 0.77 and 0.86, and the average F1 score was 0.75 and 0.86, which were better than the other existing methods. This improvement reveals the complementarity of speech production and perception features in carrying depressive information.The sample size was relatively small, which may limit the application in clinical translation to some extent.This experiment proves the good generalization ability and superiority of the proposed MSCDR and suggests that the vocal tract changes in patients with depression deserve attention for audio-based depression diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水门发布了新的文献求助10
刚刚
乐观的代桃完成签到,获得积分20
2秒前
5秒前
Jasper应助yyxx采纳,获得10
8秒前
ShiRz发布了新的文献求助10
9秒前
泓凯骏完成签到 ,获得积分10
9秒前
龙眼完成签到,获得积分10
10秒前
11秒前
15秒前
15秒前
简单访卉发布了新的文献求助10
17秒前
kk完成签到,获得积分10
19秒前
朱文韬发布了新的文献求助10
19秒前
19秒前
JunCheLi完成签到 ,获得积分10
21秒前
夕荀发布了新的文献求助10
22秒前
23秒前
科研通AI5应助kk采纳,获得10
24秒前
yyxx发布了新的文献求助10
26秒前
BINBIN完成签到 ,获得积分10
26秒前
落寞剑成完成签到 ,获得积分10
26秒前
26秒前
合适的平安完成签到,获得积分10
27秒前
dragonking520完成签到 ,获得积分10
28秒前
豆豆小baby完成签到,获得积分10
29秒前
29秒前
34秒前
35秒前
35秒前
caspar完成签到,获得积分10
35秒前
梅卡完成签到 ,获得积分10
38秒前
风趣雪一发布了新的文献求助10
40秒前
完美世界应助呆萌的雁荷采纳,获得10
40秒前
张张发布了新的文献求助10
40秒前
失眠惜海完成签到,获得积分10
42秒前
现代书雪发布了新的文献求助20
43秒前
yi完成签到 ,获得积分10
46秒前
kisaragiidu完成签到,获得积分10
48秒前
张张完成签到,获得积分20
48秒前
爆米花应助ardejiang采纳,获得10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776905
求助须知:如何正确求助?哪些是违规求助? 3322325
关于积分的说明 10209713
捐赠科研通 3037674
什么是DOI,文献DOI怎么找? 1666792
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757984