A comparison between computer vision- and deep learning-based models for automated concrete crack detection

卷积神经网络 人工智能 计算机科学 深度学习 公制(单位) 机器学习 目视检查 模式识别(心理学) 计算机视觉 工程类 运营管理
作者
Beatriz Sales da Cunha,Márcio das Chagas Moura,Caio Bezerra Souto Maior,Ana Cláudia Souza Vidal de Negreiros,Isis Didier Lins
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE Publishing]
卷期号:237 (5): 994-1010 被引量:3
标识
DOI:10.1177/1748006x221140966
摘要

Systems subjected to continuous operation are exposed to different failure mechanisms such as fatigue, corrosion, and temperature-related defects, which makes inspection and monitoring their health paramount to prevent a system suffering from severe damage. However, visual inspection strongly depends on a human being’s experience, and so its accuracy is influenced by the physical and cognitive state of the inspector. Particularly, civil infrastructures need to be periodically inspected. This is costly, time-consuming, labor-intensive, hazardous, and biased. Advances in Computer Vision (CV) techniques provide the means to develop automated, accurate, non-contact, and non-destructive inspection methods. Hence, this paper compares two different approaches to detecting cracks in images automatically. The first is based on a traditional CV technique, using texture analysis and machine learning methods (TA + ML-based), and the second is based on deep learning (DL), using Convolutional Neural Networks (CNN) models. We analyze both approaches, comparing several ML models and CNN architectures in a real crack database considering six distinct dataset sizes. The results showed that for small-sized datasets, for example, up to 100 images, the DL-based approach achieved a balanced accuracy (BA) of ∼74%, while the TA + ML-based approach obtained a BA > 95%. For larger datasets, the performances of both approaches present comparable results. For images classified as having crack(s), we also evaluate three metrics to measure the severity of a crack based on a segmented version of the original image, as an additional metric to trigger the appropriate maintenance response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗嵩发布了新的文献求助10
1秒前
1秒前
QiQi完成签到,获得积分10
1秒前
阔达源智关注了科研通微信公众号
2秒前
2秒前
Shelby发布了新的文献求助10
2秒前
wshwx完成签到,获得积分10
3秒前
vvei发布了新的文献求助10
5秒前
李健应助yhzheng采纳,获得10
5秒前
忐忑的凌波完成签到,获得积分10
5秒前
研友_VZG7GZ应助Shelby采纳,获得30
6秒前
yangya发布了新的文献求助10
6秒前
6秒前
6秒前
jue关闭了jue文献求助
6秒前
7秒前
7秒前
7秒前
LA发布了新的文献求助10
8秒前
maclogos发布了新的文献求助10
8秒前
Akim应助charllar采纳,获得10
8秒前
8秒前
9秒前
瑶瑶完成签到,获得积分10
9秒前
9秒前
10秒前
敏感的凝天完成签到,获得积分10
11秒前
zhenghua发布了新的文献求助10
11秒前
多吃香菜发布了新的文献求助10
11秒前
濮阳伯云发布了新的文献求助10
12秒前
王坤发布了新的文献求助10
12秒前
12秒前
稀罕你发布了新的文献求助10
12秒前
Rw发布了新的文献求助10
13秒前
Xiong完成签到,获得积分20
13秒前
共享精神应助lightgo采纳,获得10
13秒前
努力奋斗完成签到,获得积分10
13秒前
14秒前
16秒前
17秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3888645
求助须知:如何正确求助?哪些是违规求助? 3430928
关于积分的说明 10772106
捐赠科研通 3156003
什么是DOI,文献DOI怎么找? 1742770
邀请新用户注册赠送积分活动 841390
科研通“疑难数据库(出版商)”最低求助积分说明 785894