A machine learning-based diagnosis modelling of type 2 diabetes mellitus with environmental metal exposure

随机森林 特征选择 2型糖尿病 计算机科学 梯度升压 人工智能 集成学习 Boosting(机器学习) 机器学习 统计 医学 糖尿病 数学 内分泌学
作者
Min Zhao,Jin W,Wenzhi Qin,Xin Huang,Guangdi Chen,Xinyuan Zhao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:235: 107537-107537 被引量:22
标识
DOI:10.1016/j.cmpb.2023.107537
摘要

Increasing and compelling evidence has been proved that urinary and dietary metal exposure are underappreciated but potentially modifiable biomarkers for type 2 diabetes mellitus (T2DM). The aims of this study were (1) to identify the key potential biomarkers which contributed to T2DM with effective and parsimonious features and (2) to assess the utility of baseline variables and metal exposure in the diagnosis of T2DM.Based on the National Health and Nutrition Examination Survey (NHANES), we selected 9822 screening records with 82 significant variables covering demographics, lifestyle, anthropometric measures, diet and metal exposure for this study. Combining extreme gradient boosting (XGBoost), random forest and light gradient boosting machine (lightGBM), a soft voting ensemble model was proposed to measure the importance of 82 features. With this soft voting ensemble model and variance inflation factor (VIF), strong multicollinear features with low importance scores were further removed from candidate biomarkers. Then, a soft voting ensemble classifier was adopted to demonstrate the efficiency of the proposed feature selection method.With the novel feature selection method, 12 baseline variables and 3 metal variables were selected to detect patients at risk for T2DM in our study. For metal variables, the dietary copper (Cu), urinary cadmium (Cd) and urinary mercury (Hg) metals were selected as the most remarkable metal exposure and the corresponding P-values were all less than 0.05. In a classification model of T2DM with 12 baseline biomarkers, the addition of 3 metal exposure improved the classification accuracy of T2DM from a traditional area under the curve (AUC) 0.792 of the receiver operating characteristic (ROC) to an AUC 0.847.This was the first demonstration of T2DM classification with machine learning under urinary and dietary metal exposure. Improved prediction precision illustrated the effectiveness of the proposed machine learning-based diagnosis model facilitated lifestyle/dietary intervention for T2DM prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高高菠萝完成签到 ,获得积分10
3秒前
exy完成签到,获得积分10
5秒前
默默向雪完成签到,获得积分0
5秒前
初夏完成签到,获得积分10
5秒前
累了就休息不是放弃完成签到,获得积分10
6秒前
内向的乾发布了新的文献求助10
6秒前
早早早完成签到,获得积分10
7秒前
大雄的梦想是什么完成签到 ,获得积分10
7秒前
张小苟发布了新的文献求助10
9秒前
称心不尤完成签到 ,获得积分10
13秒前
鱼咬羊完成签到,获得积分10
13秒前
14秒前
16秒前
美丽钢铁侠完成签到,获得积分20
19秒前
spring17发布了新的文献求助30
20秒前
ding应助22采纳,获得10
21秒前
cnulee发布了新的文献求助10
23秒前
灵巧的以亦完成签到 ,获得积分10
24秒前
25秒前
spring17完成签到,获得积分20
32秒前
刘文思完成签到,获得积分10
36秒前
37秒前
38秒前
ZW发布了新的文献求助10
42秒前
cnulee完成签到,获得积分10
42秒前
玉龙月发布了新的文献求助10
44秒前
49秒前
无奈慕卉完成签到 ,获得积分10
50秒前
三物完成签到 ,获得积分10
51秒前
研友_VZG7GZ应助玉龙月采纳,获得10
54秒前
月光入梦完成签到 ,获得积分10
54秒前
22发布了新的文献求助10
56秒前
领导范儿应助moon采纳,获得10
59秒前
闪闪的斑马完成签到,获得积分10
1分钟前
1分钟前
无限小天鹅完成签到,获得积分10
1分钟前
waayu完成签到 ,获得积分10
1分钟前
哟呵完成签到,获得积分0
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214659
捐赠科研通 3038693
什么是DOI,文献DOI怎么找? 1667611
邀请新用户注册赠送积分活动 798220
科研通“疑难数据库(出版商)”最低求助积分说明 758315