分光计
光谱分辨率
傅里叶变换光谱学
光谱学
频率梳
光学
傅里叶变换
傅里叶变换红外光谱
分辨率(逻辑)
多普勒效应
激光器
物理
材料科学
计算机科学
谱线
天文
量子力学
人工智能
作者
Sergej Markmann,Martin Franckié,Mathieu Bertrand,Mehran Shahmohammadi,Andres Forrer,Pierre Jouy,Mattias Beck,Jérôme Faist,Giacomo Scalari
标识
DOI:10.1038/s42005-023-01157-5
摘要
Abstract Fast (sub-second) spectroscopy with high spectral resolution is of vital importance for revealing quantum chemistry kinetics of complex chemical and biological reactions. Fourier transform (FT) spectrometers can achieve high spectral resolution and operate at hundreds of ms time scales in rapid-scan mode. However, the linear translation of a scanning mirror imposes stringent time-resolution limitations to these systems, which makes simultaneous high spectral and temporal resolution very difficult. Here, we demonstrate an FT spectrometer whose operational principle is based on continuous rotational motion of the scanning mirror, effectively decoupling the spectral resolution from the temporal one. Furthermore, we show that such rotational FT spectrometer can perform Mid-IR dual-comb spectroscopy with a single comb source, since the Doppler-shifted version of the comb serves as the second comb. In our realization, we combine the advantages of dual-comb and FT spectroscopy using a single quantum cascade laser frequency comb emitting at 8.2 μm as a light source. Our technique does not require any diffractive or dispersive optical elements and hence preserve the Jacquinot’s-, Fellgett’s-, and Connes’-advantages of FT spectrometers. By integrating mulitple broadband sources, such system could pave the way for applications where high speed, large optical bandwidth, and high spectral resolution are desired.
科研通智能强力驱动
Strongly Powered by AbleSci AI