亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using Machine Learning to Predict Outcomes of Patients with Blunt Traumatic Aortic Injuries

医学 迟钝的 人口统计学的 逻辑回归 适当的使用标准 急诊医学 外科 内科学 人口学 社会学
作者
Eileen Lu,Joseph J. DuBose,Mythreye Venkatesan,Zhiping Paul Wang,Benjamin W. Starnes,Naveed Saqib,Charles C. Miller,Ali Azizzadeh,Elizabeth L. Chou
出处
期刊:The journal of trauma and acute care surgery [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/ta.0000000000004322
摘要

ABSTRACT Introduction The optimal management of blunt thoracic aortic injury (BTAI) remains controversial, with experienced centers offering therapy ranging from medical management to TEVAR. We investigated the utility of a machine learning (ML) algorithm to develop a prognostic model of risk factors on mortality in patients with BTAI. Methods The Aortic Trauma Foundation registry was utilized to examine demographics, injury characteristics, management and outcomes of patients with BTAI. A STREAMLINE (A Simple, Transparent, End-To-End Automated Machine Learning Pipeline Facilitating Data Analysis and Algorithm Comparison) model as well as logistic regression (LR) analysis with imputation using chained equations was developed and compared. Results From a total of 1018 patients in the registry, 702 patients were included in the final analysis. Of the 258 (37%) patients who were medically managed, 44 (17%) died during admission, 14 (5.4%) of which were aortic related deaths. 444 (63%) patients underwent TEVAR and 343 of which underwent TEVAR within 24 hours of admission. Amongst TEVAR patients, 39 (8.8%) patients died and 7 (1.6%) had aortic related deaths. (Table 1) Comparison of the STREAMLINE and LR model showed no significant difference in ROC curves and high AUCs of 0.869 (95% CI, 0.813 – 0.925) and 0.840 (95% CI, 0.779 – 0.900) respectively in predicting in-hospital mortality. Unexpectedly, however, the variables prioritized in each model differed between models (Figure 1A-B). The top three variables identified from the LR model were similar to that from existing literature. The STREAMLINE model, however, prioritized location of the injury along the lesser curve, age and aortic injury grade (Figure 1A). Conclusions Machine learning provides insight on prioritization of variables not typically identified in standard multivariable logistic regression. Further investigation and validation in other aortic injury cohorts are needed to delineate the utility of ML models. Level of Evidence Level III Study Type Original research (prognostic/epidemiological)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利白竹完成签到 ,获得积分10
20秒前
火星完成签到 ,获得积分10
54秒前
1分钟前
田様应助chenqian采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
chenqian发布了新的文献求助10
1分钟前
chenqian完成签到,获得积分20
1分钟前
张翰林发布了新的文献求助10
1分钟前
1分钟前
tlh完成签到 ,获得积分10
1分钟前
ding应助xyliu采纳,获得10
1分钟前
慕青应助平安健康采纳,获得10
2分钟前
2分钟前
xyliu发布了新的文献求助10
2分钟前
空2完成签到 ,获得积分0
2分钟前
瘦瘦沛柔完成签到,获得积分10
2分钟前
英姑应助ll采纳,获得10
2分钟前
2分钟前
ll发布了新的文献求助10
3分钟前
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
3分钟前
KINGAZX完成签到 ,获得积分10
4分钟前
4分钟前
瘦瘦沛柔发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
nancy发布了新的文献求助10
4分钟前
decade_32完成签到 ,获得积分10
5分钟前
积极的西牛完成签到,获得积分10
5分钟前
领导范儿应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
轻松小张完成签到,获得积分10
5分钟前
香蕉觅云应助ma采纳,获得10
6分钟前
6分钟前
6分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Happiness in the Nordic World 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3857311
求助须知:如何正确求助?哪些是违规求助? 3399733
关于积分的说明 10613422
捐赠科研通 3121973
什么是DOI,文献DOI怎么找? 1721183
邀请新用户注册赠送积分活动 828920
科研通“疑难数据库(出版商)”最低求助积分说明 777928