Research on Multi-objective Optimization Model of Power Storage Materials Based on NSGA-II Algorithm

计算机科学 优化算法 功率(物理) 算法 数学优化 数学 量子力学 物理
作者
Zixi Hu,Shuang Liu,Fan Yang,Xiaodong Geng,Xiaodi Huo,Xiaolong Liu
出处
期刊:International Journal of Computational Intelligence Systems [Springer Nature]
卷期号:17 (1) 被引量:4
标识
DOI:10.1007/s44196-024-00454-3
摘要

Abstract Aiming at the problems of slow convergence speed and low precision probability of multi-objective optimization of energy storage materials, a multi-objective optimization model of energy storage materials based on NSGA-II algorithm was proposed. The association rule set of storage materials in the joint supply chain operation performance management system is extracted, and the rough vector feature distribution set multi-objective optimization method is used to decompose and optimize the characteristics of storage materials in the joint supply chain operation performance management system. Using NSGA-II optimization analysis method, this paper summarizes the power storage materials under the joint supply chain operation performance management system, and summarizes three kinds of inventory control: periodic inventory, inventory coding, and computerized inventory. Combined with the positive regression learning method of organizational operational performance, the multi-objective optimization decision of electric storage materials under the joint supply chain operational performance management system is realized. The simulation results show that under the joint supply chain operation performance management system, the proposed method reaches the optimal convergence after 65 iterations, the convergence speed is fast, and the accuracy probability reaches 1.000 after 80 iterations, which solves the problems of slow convergence speed and low accuracy probability, and has a good scheduling ability of energy storage materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助LD20000620采纳,获得10
1秒前
小蘑菇应助四文鱼采纳,获得10
1秒前
1秒前
QG完成签到,获得积分10
1秒前
2秒前
2秒前
852应助夜雨潇潇采纳,获得10
2秒前
2秒前
2秒前
2秒前
MarsXHXL发布了新的文献求助10
3秒前
Red完成签到,获得积分10
3秒前
3秒前
berkelerey12138完成签到,获得积分10
4秒前
xiaokai发布了新的文献求助10
4秒前
文献进入大脑完成签到,获得积分10
4秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
CC应助科研通管家采纳,获得10
5秒前
star应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
Jared应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
niNe3YUE应助科研通管家采纳,获得10
5秒前
ZeKaWa应助科研通管家采纳,获得20
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
souther完成签到,获得积分0
5秒前
Akim应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
6秒前
CC应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
Linos应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
shhoing应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642291
关于积分的说明 14667488
捐赠科研通 4583725
什么是DOI,文献DOI怎么找? 2514379
邀请新用户注册赠送积分活动 1488727
关于科研通互助平台的介绍 1459336