Thy-Wise: An interpretable machine learning model for the evaluation of thyroid nodules

甲状腺结节 人工智能 计算机科学 自然语言处理 甲状腺 机器学习 医学 内科学
作者
Zhe Jin,Shufang Pei,Lizhu Ouyang,Lu Zhang,Xiaokai Mo,Qiuying Chen,Jingjing You,Luyan Chen,Bin Zhang,Shuixing Zhang
标识
DOI:10.6084/m9.figshare.20417895
摘要

Data Description:
The database contains ultrasound images of thyroid nodules that were finally included in the study. As the aim of this study was to identify nodules as benign or malignant, all nodules were placed in two zip files according to their pathological nature: benign_after.zip and malignant_after.zip.
After unzipping the zip package and opening the folder, you can see several folders named by "pathological nature + number", each folder corresponds to a thyroid nodule and contains its ultrasound images collected in a single examination.

Ethical Approval:
This retrospective study was approved by the institutional Ethics Committees of the First Affiliated Hospital of Jinan University, and the requirement for informed consent was waived.

Sensitive Information Protection:
All sensitive information contained in the image, including the patient's personal information, the hospital visited, and the time of the visit, has been removed using the CV2 toolkit from python for the purpose of anonymization.

Processing pipeline and analysis steps:
All the annotations in the images and clips were eliminated before review. US images were evaluated in a blinded fashion, with no US or pathology reports available, by two board-certified radiologists (with more than 10 years of experience in thyroid sonography) independently.
Nodule size was measured as the maximal dimension on US images and the five gray-scale US categories were reviewed according to the ACR TI-RADS lexicon (5): composition, echogenicity, shape, margin, and echogenic foci. In the ACR TI-RADS, the TI-RADS risk level for nodules was determined by the total score of the five US categories, ranging from TR1 (benign) to TR5 (highly suspicious).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼沅完成签到,获得积分10
刚刚
疯狂的安波完成签到,获得积分20
1秒前
TvT发布了新的文献求助10
1秒前
稳重奇异果应助zone采纳,获得10
1秒前
李222222完成签到 ,获得积分10
1秒前
lc完成签到,获得积分10
2秒前
JAMA发布了新的文献求助10
2秒前
Lsy完成签到,获得积分10
3秒前
Rocky完成签到,获得积分10
3秒前
庄海棠完成签到 ,获得积分10
4秒前
taozidetao完成签到 ,获得积分10
4秒前
小猪猪饲养员完成签到,获得积分10
4秒前
吹雪完成签到,获得积分0
4秒前
福star高照完成签到,获得积分10
4秒前
牛牛完成签到,获得积分10
5秒前
yoga敏发布了新的文献求助200
6秒前
小麦完成签到,获得积分10
7秒前
小高完成签到,获得积分10
7秒前
斯寜应助大成子采纳,获得10
8秒前
JAMA完成签到,获得积分10
8秒前
秋秋完成签到,获得积分10
9秒前
科研小越完成签到,获得积分10
9秒前
领导范儿应助yuneoki采纳,获得10
10秒前
10秒前
不想长黑眼圈完成签到 ,获得积分10
10秒前
xuanhui完成签到,获得积分10
10秒前
10秒前
柯忻完成签到,获得积分10
10秒前
Yiwaa完成签到,获得积分10
11秒前
关关难过关关过完成签到,获得积分10
11秒前
超帅从彤完成签到 ,获得积分10
11秒前
sota完成签到,获得积分10
12秒前
比大家完成签到 ,获得积分10
12秒前
星辰大海应助妮妮采纳,获得10
12秒前
MAD666完成签到,获得积分10
13秒前
松松包完成签到,获得积分10
13秒前
xiaofeizhu发布了新的文献求助10
14秒前
weiyi完成签到,获得积分10
14秒前
momo完成签到,获得积分10
14秒前
爆米花应助科研通管家采纳,获得10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795794
求助须知:如何正确求助?哪些是违规求助? 3340791
关于积分的说明 10302239
捐赠科研通 3057329
什么是DOI,文献DOI怎么找? 1677651
邀请新用户注册赠送积分活动 805524
科研通“疑难数据库(出版商)”最低求助积分说明 762642