Federated Learning With Non-IID Data: A Survey

计算机科学 数据建模 数据库
作者
Zili Lu,Heng Pan,Yueyue Dai,Xueming Si,Yan Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (11): 19188-19209 被引量:145
标识
DOI:10.1109/jiot.2024.3376548
摘要

Federated learning (FL) is an efficient decentralized machine learning methodology for processing non-independent and identically distributed (non-IID) data due to geographical and temporal distribution differences. Non-IID data generally indicates substantial disparities in data distribution and features among clients. This assumption is completely different from the conventional assumption of independent and identically distributed (IID) data in which all clients' data originates from the same distribution. There are many factors that affect the features of non-IID data, such as user preferences, data collection methods, and client characteristics. The factors of data distribution, category proportions, and feature representation also affect the statistical properties of non-IID data. This paper conducts an in-depth exploration of FL with the consideration of diverse features and statistical properties of non-IID data. Specifically, we first discuss the impact of non-IID data on communication efficiency, model convergence, and FL accuracy. The presence of non-IID data leads to increased communication overhead, imbalanced class distribution, and uneven local model updates. All of these affect FL convergence and performance. Then, we present the latest advanced techniques, such as data partitioning/sharing, client selection, differential privacy, and secure aggregation [1], which are used to address the challenges posed by non-IID data in terms of communication efficiency and privacy protection. Furthermore, we show the emerging applications and use cases of FL with non-IID data in various domains, such as healthcare, IoT, and edge computing. Overall, this survey provides a comprehensive understanding of FL with non-IID data, including the challenges, advancements, and practical applications in different areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷酷以蓝完成签到,获得积分10
1秒前
1秒前
a15670270171发布了新的文献求助10
1秒前
搜集达人应助嘿咻嘿咻采纳,获得10
1秒前
巧克力发布了新的文献求助10
1秒前
犹豫的青烟完成签到,获得积分10
2秒前
赘婿应助顾瑶采纳,获得10
2秒前
3秒前
NexusExplorer应助野生菜狗采纳,获得10
3秒前
完美世界应助万伯瑜采纳,获得10
3秒前
wlscj应助爱看小儿卡通书采纳,获得20
4秒前
跳跃发布了新的文献求助10
5秒前
5秒前
小蘑菇应助你好好想想采纳,获得10
5秒前
忆之发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
视野胤完成签到,获得积分10
10秒前
11秒前
微风无起完成签到,获得积分10
11秒前
kyt发布了新的文献求助10
11秒前
韦一手发布了新的文献求助10
12秒前
13秒前
Allen完成签到,获得积分10
14秒前
视野胤发布了新的文献求助10
14秒前
车厘子发布了新的文献求助10
14秒前
充电宝应助姜依涵采纳,获得10
16秒前
阜睿发布了新的文献求助10
17秒前
18秒前
烟花应助eseme采纳,获得10
18秒前
白染发布了新的文献求助10
19秒前
WYQ发布了新的文献求助10
20秒前
凡F完成签到 ,获得积分10
21秒前
格子大王完成签到,获得积分10
22秒前
23秒前
Halo完成签到,获得积分10
24秒前
大胆仰完成签到,获得积分10
25秒前
小十一完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289916
求助须知:如何正确求助?哪些是违规求助? 4441355
关于积分的说明 13827234
捐赠科研通 4323814
什么是DOI,文献DOI怎么找? 2373389
邀请新用户注册赠送积分活动 1368785
关于科研通互助平台的介绍 1332720