已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Federated Learning With Non-IID Data: A Survey

计算机科学 数据建模 数据库
作者
Zili Lu,Heng Pan,Yueyue Dai,Xueming Si,Yan Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (11): 19188-19209 被引量:77
标识
DOI:10.1109/jiot.2024.3376548
摘要

Federated learning (FL) is an efficient decentralized machine learning methodology for processing non-independent and identically distributed (non-IID) data due to geographical and temporal distribution differences. Non-IID data generally indicates substantial disparities in data distribution and features among clients. This assumption is completely different from the conventional assumption of independent and identically distributed (IID) data in which all clients' data originates from the same distribution. There are many factors that affect the features of non-IID data, such as user preferences, data collection methods, and client characteristics. The factors of data distribution, category proportions, and feature representation also affect the statistical properties of non-IID data. This paper conducts an in-depth exploration of FL with the consideration of diverse features and statistical properties of non-IID data. Specifically, we first discuss the impact of non-IID data on communication efficiency, model convergence, and FL accuracy. The presence of non-IID data leads to increased communication overhead, imbalanced class distribution, and uneven local model updates. All of these affect FL convergence and performance. Then, we present the latest advanced techniques, such as data partitioning/sharing, client selection, differential privacy, and secure aggregation [1], which are used to address the challenges posed by non-IID data in terms of communication efficiency and privacy protection. Furthermore, we show the emerging applications and use cases of FL with non-IID data in various domains, such as healthcare, IoT, and edge computing. Overall, this survey provides a comprehensive understanding of FL with non-IID data, including the challenges, advancements, and practical applications in different areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
寂寞的季节69完成签到,获得积分10
5秒前
kongkong完成签到,获得积分10
7秒前
姚夏发布了新的文献求助10
7秒前
8秒前
FashionBoy应助苏打采纳,获得10
10秒前
13秒前
徐诗颖关注了科研通微信公众号
17秒前
耶啵完成签到 ,获得积分10
17秒前
零慧发布了新的文献求助10
18秒前
哇咔咔完成签到 ,获得积分10
19秒前
21秒前
FashionBoy应助钰莲采纳,获得10
26秒前
27秒前
27秒前
haha完成签到 ,获得积分10
31秒前
lily发布了新的文献求助10
31秒前
ai zs发布了新的文献求助10
31秒前
www完成签到,获得积分10
31秒前
vivre223完成签到 ,获得积分10
34秒前
科研通AI6应助黑曜石采纳,获得10
35秒前
苹果完成签到 ,获得积分10
35秒前
36秒前
lily完成签到,获得积分10
36秒前
mc完成签到 ,获得积分10
38秒前
落后的凝梦完成签到 ,获得积分10
40秒前
苹果关注了科研通微信公众号
40秒前
钰莲发布了新的文献求助10
42秒前
科研通AI6应助Irony采纳,获得10
45秒前
情怀应助骑着蜗牛追导弹采纳,获得10
48秒前
吴DrYDYY发布了新的文献求助10
52秒前
赘婿应助Feiyan采纳,获得30
54秒前
斯文败类应助ai zs采纳,获得10
58秒前
科研通AI5应助懵懂的冰凡采纳,获得10
59秒前
钰莲完成签到,获得积分10
59秒前
Ade发布了新的文献求助10
1分钟前
研友_VZG7GZ应助岸上牛采纳,获得10
1分钟前
二猫完成签到,获得积分10
1分钟前
胡一刀发布了新的文献求助20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4785960
求助须知:如何正确求助?哪些是违规求助? 4112447
关于积分的说明 12722723
捐赠科研通 3837702
什么是DOI,文献DOI怎么找? 2115878
邀请新用户注册赠送积分活动 1138765
关于科研通互助平台的介绍 1025187