Developing and testing the efficacy of a novel forecasting methodology: Theory and evidence from China

中国 经济 计量经济学 发展中国家 政治学 经济增长 法学
作者
Yuhong Yang,Tarik Doğru,Chao Liang,Jianqiong Wang,Pengfei Xu
出处
期刊:Tourism Economics [SAGE Publishing]
卷期号:30 (8): 2043-2069 被引量:1
标识
DOI:10.1177/13548166241248866
摘要

Numerous methodologies have been offered to forecast tourism demand; however, accurate forecasting has been a major challenge for policymakers despite its critical importance for tourism planning. Therefore, we propose and test a novel forecasting methodology that combines principal component analysis (PCA) and long short-term memory (LSTM) network, along with the Baidu index, to forecast daily tourist arrivals for a popular tourist attraction in China. Word2Vec, a software tool launched by Google, is used to improve the coverage and accuracy of search keywords in the construction of the Baidu indexes. Before training the LSTM network, PCA is used to reduce noise and optimize the data. Considering the study’s timeframe, the impact of COVID-19 pandemic has also been assessed. The efficacy of the proposed forecasting methodology is verified, and the results show that the PCA-LSTM model outperforms other models in terms of prediction accuracy and stability. Theoretical and practical implications are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助猪猪hero采纳,获得10
刚刚
科研通AI5应助teng采纳,获得10
刚刚
accept发布了新的文献求助10
刚刚
上官若男应助叶子采纳,获得10
3秒前
无花果应助科研通管家采纳,获得30
4秒前
4秒前
大个应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
只爱吃肠粉完成签到,获得积分10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
小宋应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得20
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
RUI1128完成签到,获得积分10
6秒前
云在青天水在瓶完成签到,获得积分20
6秒前
6秒前
大个应助忧伤的宝马采纳,获得10
7秒前
azzoei完成签到,获得积分10
8秒前
别看我只是一只羊完成签到,获得积分10
8秒前
alin完成签到 ,获得积分10
8秒前
10秒前
12秒前
小鹅发布了新的文献求助10
12秒前
13秒前
14秒前
ssong完成签到,获得积分20
14秒前
DrKe完成签到,获得积分10
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795026
求助须知:如何正确求助?哪些是违规求助? 3339955
关于积分的说明 10298247
捐赠科研通 3056550
什么是DOI,文献DOI怎么找? 1677052
邀请新用户注册赠送积分活动 805118
科研通“疑难数据库(出版商)”最低求助积分说明 762333