Adaptive unified contrastive learning with graph-based feature aggregator for imbalanced medical image classification

计算机科学 新闻聚合器 人工智能 模式识别(心理学) 特征(语言学) 图形 特征学习 机器学习 理论计算机科学 哲学 语言学 操作系统
作者
Cong Cong,Sidong Liu,Priyanka Rana,Maurice Pagnucco,Antonio Di Ieva,Shlomo Berkovsky,Yang Song
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:251: 123783-123783 被引量:3
标识
DOI:10.1016/j.eswa.2024.123783
摘要

Medical image datasets are often imbalanced due to biases in data collection and limitations in acquiring data for rare conditions. Addressing class imbalance is crucial for developing reliable deep-learning algorithms capable of effectively handling all classes. Recent class imbalanced methods have investigated the effectiveness of self-supervised learning (SSL) and demonstrated that such learned features offer increased resilience to class imbalance issues and obtain much improved performances over other types of class imbalanced methods. However, existing SSL methods either lack end-to-end capabilities or require substantial memory resources, potentially resulting in sub-optimal features and classifiers and limiting their practical usage. Moreover, the conventional pooling operations (e.g., max-pooling, or average-pooling) tend to generate less discriminative features when datasets pose high inter-class similarities. To alleviate the above issues, in this study, we present a novel end-to-end self-supervised learning framework tailored for imbalanced medical image datasets. Our framework constitutes an adaptive contrastive loss that can dynamically adjust the model's learning focus between feature learning and classifier learning and a feature aggregation mechanism based on Graph Neural Networks to further enhance feature discriminability. We evaluate the effectiveness of our framework on four medical datasets, and the experimental results highlight its superior performance in imbalanced image classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜完成签到 ,获得积分10
刚刚
专注鸡完成签到,获得积分10
刚刚
XZY发布了新的文献求助10
1秒前
科研通AI5应助US采纳,获得10
1秒前
风中小懒虫完成签到,获得积分10
2秒前
领导范儿应助liyun采纳,获得10
3秒前
分子遗传小菜鸟完成签到,获得积分10
3秒前
yep完成签到,获得积分10
4秒前
苯二氮卓完成签到,获得积分10
4秒前
e746700020完成签到,获得积分10
4秒前
CYAA完成签到,获得积分10
6秒前
zys发布了新的文献求助10
6秒前
7秒前
neversay4ever完成签到,获得积分10
8秒前
桐桐应助笨笨摇伽采纳,获得10
8秒前
wo完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
US完成签到,获得积分10
10秒前
heew发布了新的文献求助10
13秒前
US发布了新的文献求助10
13秒前
南北完成签到,获得积分10
13秒前
14秒前
14秒前
QP34完成签到 ,获得积分10
14秒前
15秒前
cc发布了新的文献求助10
15秒前
16秒前
zhenzhen完成签到,获得积分10
16秒前
CACT完成签到,获得积分10
17秒前
若安在完成签到,获得积分10
17秒前
蓝桉完成签到 ,获得积分10
17秒前
heew完成签到,获得积分10
18秒前
xu发布了新的文献求助10
19秒前
Mt完成签到,获得积分10
19秒前
exquisite完成签到,获得积分10
20秒前
鱼贝贝发布了新的文献求助10
21秒前
guoguo完成签到 ,获得积分10
21秒前
Bao完成签到 ,获得积分10
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808162
求助须知:如何正确求助?哪些是违规求助? 3352859
关于积分的说明 10360620
捐赠科研通 3068839
什么是DOI,文献DOI怎么找? 1685271
邀请新用户注册赠送积分活动 810410
科研通“疑难数据库(出版商)”最低求助积分说明 766130