卡尔曼滤波器
协方差
上下界
控制理论(社会学)
计算机科学
非线性滤波器
噪音(视频)
高斯噪声
非线性系统
高斯分布
服务拒绝攻击
扩展卡尔曼滤波器
趋同(经济学)
过滤问题
滤波器(信号处理)
数学
算法
统计
滤波器设计
人工智能
物理
数学分析
图像(数学)
经济增长
万维网
控制(管理)
互联网
量子力学
计算机视觉
经济
作者
Xiuxiu Ren,Guang‐Hong Yang
标识
DOI:10.1109/tsmc.2022.3195856
摘要
This article studies the filtering problem for a class of stochastic nonlinear system under non-Gaussian–Lévy noise and cyber attacks, where the denial-of-service (DoS) attacks and the false data-injection (FDI) attacks are both considered. Since the covariance of the Lévy noise is unknown and infinite, the standard Kalman filter fails to estimate system states. By exploiting saturation functions, a modified Kalman filter is proposed, where the extremely large values of the measurement outputs caused by the Lévy noises can be clipped. In the presence of Lévy noise and cyber attacks, an upper bound for the error covariance is guaranteed and can be minimized via designing the filter parameter. Besides, a sufficient condition is provided to guarantee the boundedness of the upper bound, and the convergence analysis of the filtering error is presented. Finally, the simulation results are given to verify the algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI