Trajectory-based conflict investigations involving two-wheelers and cars at non-signalized intersections with computer vision

交叉口(航空) 计算机科学 弹道 鉴定(生物学) 运输工程 交通冲突 执法 撞车 过程(计算) 计算机安全 交通拥挤 浮动车数据 工程类 法学 政治学 植物 生物 操作系统 物理 程序设计语言 天文
作者
Hao Chai,Zhipeng Zhang,Hao Hu,Lei Dai,Zheyong Bian
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:230: 120590-120590 被引量:14
标识
DOI:10.1016/j.eswa.2023.120590
摘要

Unsafe acts at non-signalized intersections have become a primary contributor to traffic accidents and fatalities. Whereas many studies have focused on non-signalized intersections in the past decade, capturing and recording road users' micro-behavior and risk in the mixed traffic flow remain challenging. A large number of two-wheelers (e.g., bicycles and e-bikes) appear at non-signalized intersections, in which the conflict behaviors are highly unpredictable. In this study, conflicts involving two-wheelers and cars at non-signalized intersections were investigated based on trajectory data collected with a YOLOv3-based framework automatically. A novel conflict identification algorithm was developed to gather and process microscopic trajectory data. To detect conflict behaviors involving two-wheelers and cars, near-crash identification was employed with a post-encroachment time indicator that also contributes to demonstrating the effect of vehicle order on conflict severity from an unprecedented perspective. The proposed framework was applied to a case study at a university campus in Shanghai. To explore the relationship between contributing factors and conflict severity, a significance test and ordered probability models were implemented using 10,304 conflicts collected from video data. The statistical analysis disclosed that conflicts involving e-bikes accounted for the highest proportion, and the order of vehicles (e.g., pre-encroachment vehicle and post-encroachment vehicle) has different effects on conflict severity. The analytical results with risk assessment can contribute to developing intersection-specific countermeasures for traffic safety from the perspectives of education, engineering, and law enforcement. The trajectory-based framework can be adapted to intelligent transportation systems to enhance safety management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助东风采纳,获得10
1秒前
科研助手6应助含蓄的三颜采纳,获得10
1秒前
caigc完成签到,获得积分10
2秒前
Aurora发布了新的文献求助10
3秒前
科研通AI5应助哭泣凌雪采纳,获得10
3秒前
3秒前
单纯的秋天完成签到 ,获得积分20
3秒前
思源应助筋筋子采纳,获得10
4秒前
恁时完成签到,获得积分20
4秒前
4秒前
5秒前
慕青应助瑞曦采纳,获得10
6秒前
Hiker发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
SYLH应助香蕉子骞采纳,获得10
8秒前
WNing发布了新的文献求助50
8秒前
xiixix发布了新的文献求助10
10秒前
动漫大师发布了新的文献求助20
10秒前
科研小白发布了新的文献求助10
12秒前
12秒前
小小发布了新的文献求助10
13秒前
爆米花应助云宝采纳,获得10
13秒前
动漫大师发布了新的文献求助10
14秒前
木木完成签到,获得积分10
15秒前
17秒前
勤劳糜完成签到 ,获得积分10
19秒前
19秒前
木雷发布了新的文献求助10
21秒前
21秒前
21秒前
orixero应助inRe采纳,获得10
21秒前
j45mj完成签到,获得积分10
23秒前
23秒前
阔达静曼发布了新的文献求助10
24秒前
影子完成签到 ,获得积分10
24秒前
默默雨灵发布了新的文献求助10
24秒前
云宝发布了新的文献求助10
25秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797603
求助须知:如何正确求助?哪些是违规求助? 3342992
关于积分的说明 10314523
捐赠科研通 3059700
什么是DOI,文献DOI怎么找? 1679083
邀请新用户注册赠送积分活动 806322
科研通“疑难数据库(出版商)”最低求助积分说明 763102