Prenatal Diagnosis of Placenta Accreta Spectrum Disorders: Deep Learning Radiomics of Pelvic MRI

接收机工作特性 逻辑回归 组内相关 医学 卡帕 曼惠特尼U检验 磁共振成像 放射科 人口 核医学 内科学 数学 几何学 临床心理学 环境卫生 心理测量学
作者
Lulu Peng,Zehong Yang,Jue Liu,Yi Liu,Jianwei Huang,Junwei Chen,Yun Su,Zhang Xiang,Ting Song
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (2): 496-509 被引量:5
标识
DOI:10.1002/jmri.28787
摘要

Background Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS. Purpose To explore whether DLR from MRI can be used to identify pregnancies with PAS. Study Type Retrospective. Population 324 pregnant women (mean age, 33.3 years) suspected PAS (170 training and 72 validation from institution 1, 82 external validation from institution 2) with clinicopathologically proved PAS (206 PAS, 118 non‐PAS). Field Strength/Sequence 3‐T, turbo spin‐echo T2‐weighted images. Assessment The DLR features were extracted using the MedicalNet. An MRI‐based DLR model incorporating DLR signature, clinical model (different clinical characteristics between PAS and non‐PAS groups), and MRI morphologic model (radiologists' binary assessment for the PAS diagnosis) was developed. These models were constructed in the training dataset and then validated in the validation datasets. Statistical Tests The Student t ‐test or Mann–Whitney U , χ 2 or Fisher exact test, Kappa , dice similarity coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator logistic regression, multivariate logistic regression, receiver operating characteristic (ROC) curve, DeLong test, net reclassification improvement (NRI) and integrated discrimination improvement (IDI), calibration curve with Hosmer–Lemeshow test, decision curve analysis (DCA). P < 0.05 indicated a significant difference. Results The MRI‐based DLR model had a higher area under the curve than the clinical model in three datasets (0.880 vs. 0.741, 0.861 vs. 0.772, 0.852 vs. 0.675, respectively) or MRI morphologic model in training and independent validation datasets (0.880 vs. 0.760, 0.861, vs. 0.781, respectively). The NRI and IDI were 0.123 and 0.104, respectively. The Hosmer–Lemeshow test had nonsignificant statistics ( P = 0.296 to 0.590). The DCA offered a net benefit at any threshold probability. Data Conclusion An MRI‐based DLR model may show better performance in diagnosing PAS than a clinical or MRI morphologic model. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助落寞的沛容采纳,获得10
刚刚
懒猫发布了新的文献求助20
1秒前
6秒前
chuling完成签到,获得积分10
6秒前
6秒前
李健应助曹姗采纳,获得10
7秒前
7秒前
白给完成签到,获得积分10
8秒前
莫愁完成签到,获得积分10
8秒前
小王同学完成签到,获得积分10
8秒前
9秒前
10秒前
靖秋完成签到 ,获得积分10
10秒前
水分子完成签到,获得积分10
11秒前
Invariant完成签到,获得积分20
11秒前
12秒前
Jasper应助sdnihbhew采纳,获得10
12秒前
pluto应助冰川与星辰采纳,获得20
13秒前
温暖雅阳发布了新的文献求助10
13秒前
研友_yLpzpZ发布了新的文献求助10
14秒前
Bob完成签到 ,获得积分10
14秒前
15秒前
银河打工人应助滋达不溜采纳,获得10
16秒前
孤梦落雨发布了新的文献求助10
16秒前
zho发布了新的文献求助10
17秒前
Binbin完成签到 ,获得积分10
17秒前
18秒前
18秒前
朱加凤完成签到,获得积分10
18秒前
18秒前
简单的小蜜蜂完成签到,获得积分20
18秒前
陈影完成签到,获得积分10
18秒前
pluto应助南宫秃采纳,获得10
19秒前
19秒前
Bob关注了科研通微信公众号
19秒前
tuohai完成签到,获得积分20
20秒前
靖秋关注了科研通微信公众号
21秒前
李佳洲完成签到,获得积分10
21秒前
22秒前
无骨鸡爪不长胖完成签到,获得积分10
22秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Oligopoly Pricing 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825871
求助须知:如何正确求助?哪些是违规求助? 3368162
关于积分的说明 10449560
捐赠科研通 3087618
什么是DOI,文献DOI怎么找? 1698750
邀请新用户注册赠送积分活动 816999
科研通“疑难数据库(出版商)”最低求助积分说明 769991