Machine Learning Assisted Discovery of Efficient MOFs for One-Step C2H4 Purification from Ternary C2H2/C2H4/C2H6 Mixtures

三元运算 材料科学 结晶学 计算机科学 化学 程序设计语言
作者
Tongan Yan,Zhengqing Zhang,Chongli Zhong
出处
期刊:Journal of Chemical & Engineering Data [American Chemical Society]
卷期号:69 (12): 4483-4492
标识
DOI:10.1021/acs.jced.4c00244
摘要

Purifying C2H4 from a mixture of C2H2/C2H4/C2H6 using a single adsorbent is crucial industrially. Yet, the challenge lies in their similar physicochemical properties, leading to low separation efficiency. Additionally, the lack of understanding regarding the structure–performance relationships hinders the development of high-performance metal–organic frameworks (MOFs). In this study, machine learning assisted high-throughput molecular simulation methods are employed to discover efficient MOFs for one-step C2H4 purification. The general material design strategies were proposed based on the analysis of 14,142 CoRE MOF simulation data. These include locking open metal sites, ensuring relative mass proportion of H atoms in the range of 2–4%, optimizing the largest cavity diameter to span 5–7 Å (ultramicropore), and fine-tuning φ within 0.5–0.6. Further using the computational insights obtained, 10 materials were identified with both C2H2/C2H4 and C2H6/C2H4 selectivities exceeding 3 from 137,953 hypothetical MOFs and 303,991 generated MOFs through additional molecular simulations. Our study not only provides screened and designed potential candidates for efficient one-step C2H4 purification from ternary C2H2/C2H4/C2H6 mixtures but also provides useful information for further performance improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
甜tian发布了新的文献求助10
刚刚
刚刚
1秒前
敏感的曼香完成签到 ,获得积分20
2秒前
3秒前
积极的雅寒完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
6秒前
GQL完成签到,获得积分10
6秒前
思源应助xh采纳,获得10
6秒前
max完成签到,获得积分10
6秒前
Jason发布了新的文献求助10
6秒前
Lotus完成签到,获得积分10
8秒前
杨仲文发布了新的文献求助10
8秒前
落雨发布了新的文献求助10
8秒前
小任性发布了新的文献求助10
8秒前
9秒前
斯文败类应助冰琪采纳,获得10
13秒前
13秒前
13秒前
积极觅云关注了科研通微信公众号
13秒前
14秒前
15秒前
量子星尘发布了新的文献求助150
16秒前
脑洞疼应助耍酷的小刺猬采纳,获得10
17秒前
17秒前
wy.he应助果果采纳,获得20
17秒前
万能图书馆应助勤恳迎天采纳,获得10
17秒前
17秒前
仁爱的觅夏完成签到,获得积分10
18秒前
ww发布了新的文献求助30
18秒前
18秒前
19秒前
19秒前
沉毅发布了新的文献求助10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590