Machine Learning Assisted Discovery of Efficient MOFs for One-Step C2H4 Purification from Ternary C2H2/C2H4/C2H6 Mixtures

三元运算 材料科学 结晶学 计算机科学 化学 程序设计语言
作者
Tongan Yan,Zhengqing Zhang,Chongli Zhong
出处
期刊:Journal of Chemical & Engineering Data [American Chemical Society]
卷期号:69 (12): 4483-4492
标识
DOI:10.1021/acs.jced.4c00244
摘要

Purifying C2H4 from a mixture of C2H2/C2H4/C2H6 using a single adsorbent is crucial industrially. Yet, the challenge lies in their similar physicochemical properties, leading to low separation efficiency. Additionally, the lack of understanding regarding the structure–performance relationships hinders the development of high-performance metal–organic frameworks (MOFs). In this study, machine learning assisted high-throughput molecular simulation methods are employed to discover efficient MOFs for one-step C2H4 purification. The general material design strategies were proposed based on the analysis of 14,142 CoRE MOF simulation data. These include locking open metal sites, ensuring relative mass proportion of H atoms in the range of 2–4%, optimizing the largest cavity diameter to span 5–7 Å (ultramicropore), and fine-tuning φ within 0.5–0.6. Further using the computational insights obtained, 10 materials were identified with both C2H2/C2H4 and C2H6/C2H4 selectivities exceeding 3 from 137,953 hypothetical MOFs and 303,991 generated MOFs through additional molecular simulations. Our study not only provides screened and designed potential candidates for efficient one-step C2H4 purification from ternary C2H2/C2H4/C2H6 mixtures but also provides useful information for further performance improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
孙周发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
传奇3应助zz采纳,获得10
1秒前
1秒前
安息香发布了新的文献求助50
1秒前
无花果应助cxlll采纳,获得10
2秒前
2秒前
4秒前
机智的夜云完成签到,获得积分10
4秒前
5秒前
5秒前
赘婿应助优美紫槐采纳,获得10
6秒前
6秒前
7秒前
化学镁铝完成签到,获得积分10
8秒前
8秒前
婧婧发布了新的文献求助10
9秒前
lulu完成签到,获得积分20
9秒前
shuaideyapi完成签到,获得积分10
10秒前
luo完成签到,获得积分10
10秒前
10秒前
11秒前
画晴发布了新的文献求助10
11秒前
orixero应助马骏采纳,获得10
12秒前
12秒前
12秒前
zz发布了新的文献求助10
12秒前
tangmo完成签到 ,获得积分10
13秒前
暴躁的豆芽完成签到,获得积分20
13秒前
小蘑菇应助可耐的亦瑶采纳,获得10
13秒前
13秒前
13秒前
草莓苹果发布了新的文献求助10
13秒前
Muya完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
在水一方应助帅气的唇彩采纳,获得10
15秒前
唐磊完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721428
求助须知:如何正确求助?哪些是违规求助? 5265735
关于积分的说明 15294026
捐赠科研通 4870760
什么是DOI,文献DOI怎么找? 2615607
邀请新用户注册赠送积分活动 1565381
关于科研通互助平台的介绍 1522454