亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-driven surrogate modelling of multistage Taylor cone–jet dynamics

电流体力学 物理 机械 喷射(流体) 多物理 分手 加速度 计算流体力学 电场 经典力学 有限元法 热力学 量子力学
作者
Sílvio Cândido,José Páscoa
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (5) 被引量:5
标识
DOI:10.1063/5.0205454
摘要

The Taylor cone jet is an electrohydrodynamic flow typically induced by applying an external electric field to a liquid within a capillary, commonly utilized in colloidal thrusters. This flow generation involves a complex multiphase and multiphysics process, with stability contingent upon specific operational parameters. The operational window is intrinsically linked to flow rate and applied electric voltage magnitude. High voltages can induce atomization instabilities, resulting in the production of an electrospray. Our study presents initially a numerical investigation into the atomization process of a Taylor cone jet using computational fluid dynamics. Implemented within OpenFOAM, our numerical model utilizes a volume-of-fluid approach coupled with Maxwell's equations to incorporate electric body forces into the incompressible Navier–Stokes equations. We employ the leaky-dielectric model, subjecting the interface between phases to hydrodynamic surface tension and electric stress (Maxwell stress). With this model, we studied the droplet breakup of a heptane liquid jet, for a range of operation of 1.53–7.0 nL s−1 and 2.4–4.5 kV of extraction. First, the developed high-fidelity numerical solution is studied for the jet breakup and acceleration of the droplets. Second, we integrate a machine learning model capable of extending the parametric windows of operation. Additionally, we explore the influence of extractor and acceleration plates on colloidal propulsion systems. This work offers a numerical exploration of the Taylor cone–jet transition and droplet acceleration using novel, numerically accurate approaches. Subsequently, we integrate machine learning models, specifically an artificial neural network and a one-dimensional convolutional neural network, to predict the jet's performance under conditions not previously evaluated by computationally heavy numerical models. Notably, we demonstrate that the convolutional neural network outperforms the artificial neural network for this type of application data, achieving a 2% droplet size prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
言余完成签到,获得积分10
8秒前
8秒前
lzt发布了新的文献求助10
14秒前
29秒前
木头无堤发布了新的文献求助30
35秒前
木头无堤完成签到,获得积分20
53秒前
重要千青完成签到,获得积分10
1分钟前
Bowman完成签到,获得积分10
2分钟前
2分钟前
佳期如梦完成签到 ,获得积分10
3分钟前
勤恳的小笼包完成签到,获得积分10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
VPN不好用完成签到,获得积分10
3分钟前
范振杰发布了新的文献求助10
3分钟前
科研通AI5应助zw采纳,获得10
3分钟前
范振杰完成签到,获得积分20
4分钟前
komisan完成签到 ,获得积分10
4分钟前
4分钟前
zw发布了新的文献求助10
4分钟前
4分钟前
起风了完成签到 ,获得积分10
5分钟前
孤独士晋发布了新的文献求助30
5分钟前
小马甲应助JY采纳,获得10
5分钟前
5分钟前
无花果应助机灵白桃采纳,获得10
6分钟前
李剑鸿完成签到,获得积分10
6分钟前
6分钟前
JY发布了新的文献求助10
6分钟前
6分钟前
Marciu33发布了新的文献求助10
6分钟前
6分钟前
6分钟前
7分钟前
123456789发布了新的文献求助10
7分钟前
7分钟前
hjp发布了新的文献求助10
7分钟前
7分钟前
归尘应助科研通管家采纳,获得100
7分钟前
7分钟前
hjp完成签到,获得积分10
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244161
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759483