清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Real-Time Anomaly Detection in 5G Networks Through Edge Computing

异常检测 计算机科学 可靠性 GSM演进的增强数据速率 分布式计算 异常(物理) 边缘设备 灵活性(工程) 实时计算 数据挖掘 人工智能 云计算 统计 物理 数学 软件工程 凝聚态物理 操作系统
作者
Riaz Shaik,Dara Raju,Prakash Chandra Behera,Ravindra Changala,S. Suma Christal Mary,A. Balakumar
标识
DOI:10.1109/incos59338.2024.10527501
摘要

Strong anomaly detection techniques are becoming more and more necessary as 5G networks develop in order to maintain network performance, security, and dependability. This study leverages the capabilities of Mobile Edge Computing (MEC) to present a novel method for anomaly detection in 5G networks. By processing data closer to the network edge, the integration of MEC offers an efficient and decentralized architecture that lowers latency and improves real-time detection capabilities. The distributed module takes advantage of its close proximity to network devices by using sophisticated algorithms for anomaly detection, which are implemented at the mobile edge. The system can quickly detect abnormalities from typical network activity by utilizing capabilities including Flow Collection, Anomaly Symptom Detection, and Network Anomaly Detection. The distributed module provides anomalous information to the centralized decision-making module for thorough examination. It takes into account variables like resource use and network traffic and integrates this data with metrics gathered from monitoring modules. Because of its adaptive characteristics, the system may expand anomaly detection components, enhance detection functions, and modify virtualized resources in response to shifting network circumstances. The evaluation findings reveal that the suggested anomaly detection method performs well in 5G networks, with decreased false positives, increased responsiveness, and better flexibility to changing network conditions. Using MEC not only makes anomaly detection more effective, but it also fits in with the 5G design, which makes it a viable option for protecting the upcoming generation of communication networks. It obtains 95% accuracy in classification. The suggested approach has proven to be resilient in handling security issues by producing outcomes that are either comparable to or better than those attained by other techniques that have been previously presented in the study literature. This demonstrates the model's dependability and effectiveness in handling security-related problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四氟硼酸盐完成签到 ,获得积分10
18秒前
小二郎应助xun采纳,获得10
29秒前
空白格完成签到 ,获得积分10
45秒前
juan完成签到 ,获得积分10
52秒前
bubuyier完成签到 ,获得积分10
58秒前
朴素海亦完成签到 ,获得积分10
1分钟前
mss12138完成签到 ,获得积分10
1分钟前
1分钟前
xun发布了新的文献求助10
1分钟前
净心完成签到 ,获得积分10
1分钟前
1分钟前
传奇3应助xun采纳,获得10
1分钟前
all发布了新的文献求助10
2分钟前
2分钟前
2分钟前
华仔应助all采纳,获得10
2分钟前
all完成签到,获得积分10
2分钟前
四氟硼酸盐关注了科研通微信公众号
2分钟前
攀攀完成签到 ,获得积分10
2分钟前
范ER完成签到 ,获得积分10
4分钟前
4分钟前
xun发布了新的文献求助10
5分钟前
积极的尔白完成签到 ,获得积分10
5分钟前
研友_8Y26PL完成签到 ,获得积分10
5分钟前
Jim发布了新的文献求助10
6分钟前
小明完成签到 ,获得积分10
7分钟前
糟糕的翅膀完成签到,获得积分10
8分钟前
披着羊皮的狼完成签到 ,获得积分10
8分钟前
雨竹完成签到,获得积分10
8分钟前
郁金香完成签到,获得积分10
10分钟前
勤恳的语蝶完成签到 ,获得积分10
10分钟前
yyw完成签到,获得积分10
10分钟前
薛家泰完成签到 ,获得积分10
10分钟前
muriel完成签到,获得积分0
11分钟前
11分钟前
如歌完成签到,获得积分10
11分钟前
呆呆完成签到 ,获得积分10
11分钟前
蝎子莱莱xth完成签到,获得积分10
12分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
13分钟前
Square完成签到,获得积分10
13分钟前
高分求助中
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
Bond and Bond Option Pricing based on the Current Term Structure 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4787443
求助须知:如何正确求助?哪些是违规求助? 4112997
关于积分的说明 12723715
捐赠科研通 3838728
什么是DOI,文献DOI怎么找? 2116344
邀请新用户注册赠送积分活动 1139126
关于科研通互助平台的介绍 1026159