Identification of novel cholesterol metabolism-related biomarkers for thyroid cancer to predict the prognosis, immune infiltration, and drug sensitivity

药品 药物代谢 渗透(HVAC) 医学 甲状腺 免疫系统 甲状腺癌 内科学 内分泌学 肿瘤科 药理学 免疫学 物理 热力学
作者
Xixi Li,Pei Shi,Feifei Wu,Dai Li
标识
DOI:10.21203/rs.3.rs-4348609/v1
摘要

Abstract Cholesterol metabolism plays a vital role in tumor proliferation, regulation of tumor immune escape, and drug resistance. This study aimed to investigate the predictive value of cholesterol metabolism-related genes in thyroid cancer (THCA) and the relationship between immune invasion and drug sensitivity. Methods: Cholesterol metabolism-related genes were obtained from the molecular signatures database, and univariate Cox regression and least absolute shrinkage and selection operator(LASSO) were used to construct a predictive model of cholesterol metabolism-related genes based on the TCGA-THCA dataset. The TCGA dataset was randomly divided into a training group and a validation group to verify the model's predictive value and independent prognostic effect. We then constructed a nomogram and performed enrichment analysis, immune cell infiltration, and drug sensitivity analysis. Finally, TCGA-THCA and GSE33630 datasets were used to detect the expression of signature genes, which was further verified by the HPA database. Result: Six CMRGs (FADS1, NPC2, HSD17B7, ACSL4, APOE, HMGCS2) were obtained by univariate Cox and LASSO regression to construct a prognostic model for 155 genes related to cholesterol metabolism. Their prognostic value was confirmed in the validation set, and a perfect stable nomogram was constructed combined with clinical features. We found a significant reduction in immune cell infiltration in the high-risk group and obtained sensitive drugs for different risk groups through drug sensitivity analysis. The GSE33630 dataset verified the expression of six CMRGs, and the HPA database verified the protein expression of the NPC2 gene. Conclusion: Cholesterol metabolism-related features are a promising biomarker for predicting THCA prognosis and can potentially guide immunization and targeted therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助傻傻的凌寒采纳,获得10
刚刚
杂货铺老板娘完成签到,获得积分10
刚刚
慕青应助傻傻的凌寒采纳,获得10
刚刚
研友_VZG7GZ应助傻傻的凌寒采纳,获得10
刚刚
1秒前
宋小七发布了新的文献求助10
1秒前
星辰大海应助傻傻的凌寒采纳,获得10
1秒前
1秒前
小安完成签到,获得积分10
1秒前
mdjinij发布了新的文献求助10
2秒前
我我我完成签到,获得积分10
2秒前
橙子发布了新的文献求助10
2秒前
精明书包完成签到 ,获得积分10
2秒前
2秒前
curry123发布了新的文献求助10
2秒前
王高兴完成签到,获得积分10
2秒前
kellywang发布了新的文献求助10
3秒前
NexusExplorer应助鸡腿大王采纳,获得10
3秒前
张立敏完成签到,获得积分10
3秒前
5114完成签到,获得积分10
3秒前
4秒前
在水一方应助yangzhen采纳,获得10
4秒前
bkagyin应助自觉紫安采纳,获得10
4秒前
小蜜蜂发布了新的文献求助10
4秒前
5秒前
秋半梦完成签到,获得积分10
6秒前
6秒前
榴莲大佬发布了新的文献求助10
6秒前
lsy发布了新的文献求助10
6秒前
深情的牛排完成签到 ,获得积分10
7秒前
kellywang完成签到,获得积分20
8秒前
科研通AI6应助洛城l采纳,获得10
8秒前
DW发布了新的文献求助10
8秒前
无敌霸王花应助芝士雪豹采纳,获得20
8秒前
端庄青雪发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341019
求助须知:如何正确求助?哪些是违规求助? 4477324
关于积分的说明 13934808
捐赠科研通 4373289
什么是DOI,文献DOI怎么找? 2402929
邀请新用户注册赠送积分活动 1395772
关于科研通互助平台的介绍 1367810