Genome editing of NPR3 confers potato resistance to Candidatus Liberibacter spp.

生物 青枯病 拟南芥 植物抗病性 病理系统 叶圈 微生物学 疫病疫霉菌 基因 植物 遗传学 细菌 突变体
作者
Manikandan Ramasamy,Mohan Singh Rajkumar,Renesh Bedre,Sonia Irigoyen,Katherine M. Berg‐Falloure,Michael V. Kolomiets,Kranthi K. Mandadi
出处
期刊:Plant Biotechnology Journal [Wiley]
卷期号:22 (9): 2635-2637 被引量:1
标识
DOI:10.1111/pbi.14378
摘要

Candidatus Liberibacter solanacearum (CLso) is a phloem-limited, fastidious bacterium associated with the potato (Solanum tuberosum) zebra chip disease. It is transmitted by the potato psyllid (Bactericera cockerelli Šulc.) and causes significant economic losses globally (Mora et al., 2021). Developing disease resistance by conventional breeding has shown limited success (Mora et al., 2022), thus necessitating new genetic engineering or genome editing approaches. In plants, non-expressor of pathogenesis-related (NPR) proteins act as receptors of the defence hormone, salicylic acid (SA). While NPR1 activates SA-mediated defences in Arabidopsis (Arabidopsis thaliana), its homologue, NPR3, negatively regulates SA defences. Expressing Arabidopsis NPR1 in sweet oranges (Citrus sinensis) and other crops enhances SA-mediated tolerance to multiple pathogens (Peng et al., 2021). Conversely, down-regulating NPR3 in Arabidopsis (Ding et al., 2018) and cacao (Theobroma cacao) (Fister et al., 2018) enhances resistance to bacterial and fungal pathogens, respectively. We previously showed that transiently down-regulating StNPR3 in potato hairy roots reduces CLso titer (Irigoyen et al., 2020). Here, we show that genome editing of StNPR3 confers potato resistance to CLso by activating SA-mediated defences and JA catabolism. To explore the StNPR3 function in potatoes, we identified a potato orthologue of NPR3 (NCBI# XM_006366563.2, Table S1) and designed a guide RNA targeting the first exon of the StNPR3 open reading frame (ORF) (Figure 1a,b). Agrobacterium tumefaciens-mediated transformation of potato (cv. Atlantic) was used to generate multiple StNPR3-edited lines. Based on amplicon sequencing, two independent lines were selected for further analyses. Line no. 1 is mono-allelic homozygous with an 8-bp deletion in all four alleles, and line no. 2 is bi-allelic heterozygous with a 6/7-bp deletion in two of the four alleles (Figure 1c). The edited StNPR3 ORFs are predicted to produce truncated NPR3 protein with partial BTB domain and lacking the Ankyrin-repeat and SA-binding core (Ding et al., 2018; Wang et al., 2020b). The StNPR3-edited lines exhibited no abnormal growth or development compared with vector control (VC, expressing Cas9 alone) plants. To evaluate disease resistance, plants were challenged with CLso (CLso+). Both StNPR3-edited lines showed reduced disease symptoms, while the VC exhibited prominent leaf chlorosis and wilted by 21 days post-infection (dpi) (Figure 1d). Freshly cut and fried chips from tubers from StNPR3-edited lines showed reduced discoloration compared with VC (Figure 1e–g). Quantitative PCR analysis revealed a significant reduction in CLso titer (>90%, P = 0.001) in StNPR3-edited lines (Figure 1h). Furthermore, expression of multiple defence-related marker genes (e.g., NPR1, WRKY6, PR1 and PR3) was higher in StNPR3-edited lines in uninfected and CLso-infected conditions (Figure 1i–l). Together, these results demonstrate that editing of StNPR3 enhanced potato resistance to CLso. We next examined the underlying mechanisms of tolerance of StNPR3 edited potato via transcriptomics and metabolomics. RNA sequencing of the StNPR3 edited lines at 7 and 14 dpi uncovered ~392 and ~427 commonly up-regulated genes, respectively. In comparison, ~410 and ~204 genes were commonly down-regulated at 7 and 14 dpi, respectively (Figure S1). Gene Ontology (GO)-based functional analysis of the DEGs revealed significant enrichment in biological processes such as biotic stress and defence responses (Figure 1m). Notably, several genes encoding ethylene response factors were down-regulated, suggesting a compromise of ethylene-mediated responses in the StNPR3-edited lines (Figure S2A) (Spoel et al., 2007). Among the biotic stress-related genes, oxylipin biosynthesis and JA catabolism enzymes, such as lipoxygenases (LOX2) and cytochrome P450s, respectively (Figure S2B; Zhang et al., 2023), were up-regulated. MapMan metabolite mapping of the DEGs also showed activation of several peroxidases, glutathione S-transferases and transcription factors belonging to WRKY, MADS, AP2 and bZIP families (Figure S3). Targeted LC–MS/MS analysis was performed to determine the levels of hormones and metabolites affected in the StNPR3-edited lines (Figure 1n). Levels of SA accumulated significantly higher (P ≤ 0.05) in the StNPR3-edited lines compared with VC at the 7 and 14 dpi stages (Figure 1o). JA-Ile (the biologically active form of JA) was generally low or undetectable in most tissues (Figure 1p). Remarkably, JA-Ile catabolites (12OH-JA-Ile and 12COOH-JA-Ile) and several oxylipins with putative roles in plant defences (9-HOD, 13-HOD, 9-HOT, 13-HOT, 9-KOT and 13-KOT) (Wang et al., 2020a) were significantly (P ≤ 0.05) higher in the StNPR3-edited lines (Figures 1q,r and S4). In summary, we propose a working model that, in potatoes, knockdown or complete NPR3 removal activates SA signalling and resistance to CLso (Figure 1s). NPR3 removal also activates JA-Ile catabolism and turnover to avoid hyperactivation of JA defences concomitantly that could lead to unrestricted cell death. Our results underscore the critical role of potato NPR3 in regulating SA-JA homeostasis and present a strategy to attain disease resistance by disrupting its function with genome editing technology. This study was partially supported by funds from USDA-NIFA (2021-70029-36 056; HATCH TEX0-9621, TEX0-7790), Texas A&M AgriLife Research Insect-vectored Disease Seed Grants (124190-96210), and the Texas A&M AgriLife IAHA to KM. Metabolite analyses were partially supported by a USDA-NIFA grant (2021-67013-33568) to MVK. We thank D. Rossi, V. Mora, V. Garza and R. Mireles (Texas A&M AgriLife Research) for various technical assistance. All authors declare no competing interests. K.M. and M.V.K. designed and supervised the experiments. M.R., M.S.R., S.I., R.B. and K.B.-F. performed the experiments and analysed the data. All authors contributed to the preparation and review of the manuscript. The data that supports the findings of this study are available in the supplementary material of this article. Table S1 The StNPR3 genomic, coding, and protein sequences are based on the Phytozome, S. tuberosum (v4.03) genome. Table S2 List of primers used in this study. Figure S1 Co-differentially expressed genes among the two StNPR3-edited lines. Figure S2 Heat maps of up- and down-regulated genes in the StNPR3-edited lines. Figure S3 Pathway analysis of the differentially expressed genes in the StNPR3-edited lines. Figure S4 LC-MS/MS quantification of hormones and defense-related metabolites in StNPR3-edited lines during CLso infection. Method S1 Design of CRISPR-CAS9 gene constructs. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三三搞科研应助shisui采纳,获得50
刚刚
yzm完成签到,获得积分20
刚刚
GGBond完成签到,获得积分10
刚刚
叶子发布了新的文献求助10
1秒前
ZXW完成签到,获得积分10
1秒前
哈哈哈完成签到 ,获得积分10
1秒前
lailai完成签到 ,获得积分10
1秒前
格兰德法泽尔完成签到,获得积分10
2秒前
vampirell完成签到,获得积分0
2秒前
方远锋完成签到,获得积分10
2秒前
2秒前
Layover完成签到 ,获得积分10
2秒前
优秀q发布了新的文献求助10
3秒前
lkk发布了新的文献求助10
3秒前
3秒前
小二郎应助俞水云采纳,获得10
3秒前
nn应助素年锦时采纳,获得10
3秒前
万能图书馆应助小六采纳,获得10
3秒前
3秒前
爱学习棒棒糖完成签到,获得积分10
4秒前
kk完成签到,获得积分10
5秒前
shore完成签到,获得积分10
5秒前
弱水三千完成签到,获得积分10
5秒前
喵喵喵完成签到,获得积分10
6秒前
孟孟完成签到,获得积分10
7秒前
园艺小学生完成签到,获得积分10
7秒前
海晏河清给海晏河清的求助进行了留言
7秒前
7秒前
外向的逊发布了新的文献求助10
8秒前
SYLH应助太阳采纳,获得10
8秒前
TCB完成签到,获得积分10
8秒前
Hyde完成签到,获得积分10
8秒前
kwen完成签到 ,获得积分10
8秒前
萌新完成签到,获得积分10
9秒前
dcy完成签到,获得积分10
9秒前
易水完成签到 ,获得积分10
9秒前
9秒前
10秒前
我是中国人完成签到,获得积分10
10秒前
xj305完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934836
求助须知:如何正确求助?哪些是违规求助? 3480251
关于积分的说明 11008703
捐赠科研通 3210308
什么是DOI,文献DOI怎么找? 1774123
邀请新用户注册赠送积分活动 860754
科研通“疑难数据库(出版商)”最低求助积分说明 797898