萃取(化学)
DPPH
凤尾鱼
化学
溶剂
响应面法
色谱法
氯化胆碱
核化学
棕榈
抗氧化剂
食品科学
有机化学
量子力学
物理
作者
Jennifer Osamede Airouyuwa,Hussein Mostafa,Asad Riaz,Sajid Maqsood
标识
DOI:10.1016/j.ultsonch.2022.106233
摘要
The green extraction of bioactive compounds from date seeds was investigated using seven natural deep eutectic solvents (NADES) coupled with ultrasound-assisted extraction (UAE). The seven NADESs mainly consisted of choline chloride as hydrogen bond acceptors (HBA) and four sugars, two organic acids, and one polyalcohol as hydrogen bond donors (HBD) were utilized in this study. When the extraction efficiency of the NADESs was compared to that of the conventional solvents, all the NADESs showed superior bioactive compounds recovery efficacy. The lactic acid-based NADES had the highest extraction efficiency and was further optimized using the response surface method and Box-Behnken design. A four-factors including extraction time (10, 20, and 30 min), ultrasound amplitude (70, 80, and 90 %), % NADES content (30 %, 50 %, and 70 %) and solid-to-solvent ratio (1:30, 1.5:30, and 2:30 g/ml) each at three levels (-1, 0 and 1) using Box-Behnken design was applied. The % NADES content and the solid-to-solvent ratio were the major factors influencing the extraction efficiency of the total phenolic content (TPC) and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. The optimum extraction conditions included an extraction time of 15 min, ultrasound amplitude of 90 %, % NADES content of 70 % and solid-to-liquid ratio of 1:30 g/ml. The experimental values for TPC and DPPH at optimum extraction conditions were 145.54 ± 1.54 (mg GAE/g powder) and 719.19 ± 2.09 (mmol TE/g powder), respectively. The major phenolic compounds observed in the date seeds extracted using ChCl-LA were 3,4-dihydroxybenzoic acid, catechin and caffeic acid. This study reveals that the extraction of date seeds with NADES in combination with UAE technique was able to recover significantly higher amounts of phenolic compounds which could find useful applications in the food, pharmaceutical, and cosmetics industries.
科研通智能强力驱动
Strongly Powered by AbleSci AI