Velocity Prediction of a Pipeline Inspection Gauge (PIG) with Machine Learning

里程表 管道(软件) 管道运输 人工神经网络 计算机科学 人工智能 模拟 实时计算 汽车工程 工程类 机械工程 操作系统
作者
Victor C. G. Freitas,Valbério Gonzaga De Araujo,Daniel Carlos de Carvalho Crisóstomo,Gustavo Fernandes de Lima,Adrião Duarte Dória Neto,Andrés O. Salazar
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (23): 9162-9162 被引量:3
标识
DOI:10.3390/s22239162
摘要

A device known as a pipeline inspection gauge (PIG) runs through oil and gas pipelines which performs various maintenance operations in the oil and gas industry. The PIG velocity, which plays a role in the efficiency of these operations, is usually determined indirectly from odometers installed in it. Although this is a relatively simple technique, the loss of contact between the odometer wheel and the pipeline results in measurement errors. To help reduce these errors, this investigation employed neural networks to estimate the speed of a prototype PIG, using the pressure difference that acts on the device inside the pipeline and its acceleration instead of using odometers. Static networks (e.g., multilayer perceptron) and recurrent networks (e.g., long short-term memory) were built, and in addition, a prototype PIG was developed with an embedded system based on Raspberry Pi 3 to collect speed, acceleration and pressure data for the model training. The implementation of the supervised neural networks used the Python library TensorFlow package. To train and evaluate the models, we used the PIG testing pipeline facilities available at the Petroleum Evaluation and Measurement Laboratory of the Federal University of Rio Grande do Norte (LAMP/UFRN). The results showed that the models were able to learn the relationship among the differential pressure, acceleration and speed of the PIG. The proposed approach can complement odometer-based systems, increasing the reliability of speed measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
siriuslee99完成签到,获得积分10
刚刚
王二萌完成签到 ,获得积分10
刚刚
彬彬完成签到,获得积分10
1秒前
1秒前
吴湘云发布了新的文献求助30
2秒前
小二郎应助红叶采纳,获得10
2秒前
3秒前
6秒前
研友_VZG7GZ应助叽叽采纳,获得10
7秒前
猫臭完成签到,获得积分10
7秒前
科研力力发布了新的文献求助10
7秒前
Simone完成签到 ,获得积分20
8秒前
勤恳易真发布了新的文献求助10
10秒前
韩邹光完成签到,获得积分10
11秒前
hgc发布了新的文献求助20
11秒前
无语的安白应助隔壁小孩采纳,获得20
11秒前
木木帛完成签到,获得积分10
12秒前
可爱的函函应助吴湘云采纳,获得10
14秒前
15秒前
16秒前
16秒前
九日完成签到,获得积分10
18秒前
18秒前
Abi完成签到,获得积分10
18秒前
wtvua完成签到,获得积分10
19秒前
风味烤羊腿完成签到,获得积分0
19秒前
学术laji发布了新的文献求助10
20秒前
小马甲应助稳重书双采纳,获得10
21秒前
陈伟杰发布了新的文献求助10
23秒前
24秒前
25秒前
26秒前
积极的乐瑶完成签到 ,获得积分10
26秒前
叽叽发布了新的文献求助10
28秒前
zhongjr_hz完成签到,获得积分10
28秒前
HEIKU应助王大帅采纳,获得10
29秒前
wtvua发布了新的文献求助10
29秒前
29秒前
火翟丰丰山心完成签到,获得积分10
29秒前
xxxx发布了新的文献求助10
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846291
求助须知:如何正确求助?哪些是违规求助? 3388623
关于积分的说明 10553673
捐赠科研通 3109140
什么是DOI,文献DOI怎么找? 1713351
邀请新用户注册赠送积分活动 824740
科研通“疑难数据库(出版商)”最低求助积分说明 775004