A 3D Cross-Modality Feature Interaction Network With Volumetric Feature Alignment for Brain Tumor and Tissue Segmentation

计算机科学 人工智能 特征(语言学) 分割 模态(人机交互) 模式识别(心理学) 卷积神经网络 计算机视觉 特征提取 语言学 哲学
作者
Yuzhou Zhuang,Hong Liu,Enmin Song,Chih‐Cheng Hung
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 75-86 被引量:40
标识
DOI:10.1109/jbhi.2022.3214999
摘要

Accurate volumetric segmentation of brain tumors and tissues is beneficial for quantitative brain analysis and brain disease identification in multi-modal Magnetic Resonance (MR) images. Nevertheless, due to the complex relationship between modalities, 3D Fully Convolutional Networks (3D FCNs) using simple multi-modal fusion strategies hardly learn the complex and nonlinear complementary information between modalities. Meanwhile, the indiscriminative feature aggregation between low-level and high-level features easily causes volumetric feature misalignment in 3D FCNs. On the other hand, the 3D convolution operations of 3D FCNs are excellent at modeling local relations but typically inefficient at capturing global relations between distant regions in volumetric images. To tackle these issues, we propose an Aligned Cross-Modality Interaction Network (ACMINet) for segmenting the regions of brain tumors and tissues from MR images. In this network, the cross-modality feature interaction module is first designed to adaptively and efficiently fuse and refine multi-modal features. Secondly, the volumetric feature alignment module is developed for dynamically aligning low-level and high-level features by the learnable volumetric feature deformation field. Thirdly, we propose the volumetric dual interaction graph reasoning module for graph-based global context modeling in spatial and channel dimensions. Our proposed method is applied to brain glioma, vestibular schwannoma, and brain tissue segmentation tasks, and we performed extensive experiments on BraTS2018, BraTS2020, Vestibular Schwannoma, and iSeg-2017 datasets. Experimental results show that ACMINet achieves state-of-the-art segmentation performance on all four benchmark datasets and obtains the highest DSC score of hard-segmented enhanced tumor region on the validation leaderboard of the BraTS2020 challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静的卿完成签到,获得积分10
刚刚
Jenny发布了新的文献求助150
刚刚
刚刚
HoraceHou发布了新的文献求助20
1秒前
1秒前
桐桐应助开放的大侠采纳,获得10
1秒前
2秒前
2秒前
华仔应助gao采纳,获得10
2秒前
Lucas应助哀泣魅影采纳,获得10
2秒前
2秒前
dd发布了新的文献求助10
3秒前
XG发布了新的文献求助10
3秒前
邱杨发布了新的文献求助10
3秒前
4秒前
董帅发布了新的文献求助10
4秒前
5秒前
星掠完成签到,获得积分10
5秒前
spenley发布了新的文献求助10
6秒前
6秒前
西瘡完成签到,获得积分10
6秒前
qsmei2020发布了新的文献求助20
6秒前
6秒前
斯文败类应助周粥采纳,获得10
7秒前
奋斗蜗牛完成签到,获得积分10
7秒前
7秒前
7秒前
大模型应助Autoimmune采纳,获得10
7秒前
超帅亦绿发布了新的文献求助20
8秒前
bowl完成签到 ,获得积分10
8秒前
DOCTORLI发布了新的文献求助10
8秒前
爆米花应助复方黄桃干采纳,获得10
8秒前
淡淡舞蹈发布了新的文献求助50
8秒前
9秒前
菜菜发布了新的文献求助10
9秒前
ding应助科研通管家采纳,获得10
9秒前
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
潇洒发布了新的文献求助10
9秒前
9秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3905528
求助须知:如何正确求助?哪些是违规求助? 3450741
关于积分的说明 10862562
捐赠科研通 3176190
什么是DOI,文献DOI怎么找? 1754695
邀请新用户注册赠送积分活动 848437
科研通“疑难数据库(出版商)”最低求助积分说明 791027