The Gut Microbial Co-Abundance Gene Groups (CAGs) Differentially Respond to the Flavor (Yao-Wei) of Chinese Materia Medica

风味 生物 肠道菌群 传统医学 食品科学 16S核糖体RNA 计算生物学 基因 生物化学 医学
作者
Yanan Yang,Yuting Deng,Chenchen Zang,Fang Zhang,Zibao Huang,Lin Dong,Weiying Lu,Xiaopo Zhang,Chongming Wu
出处
期刊:The American Journal of Chinese Medicine [World Scientific]
卷期号:50 (08): 2223-2244 被引量:14
标识
DOI:10.1142/s0192415x22500963
摘要

The property theory is a unique principle instructing traditional Chinese doctors to prescribe proper medicines against diseases. As an essential part of it, the five-flavor theory catalogs various Chinese materia medicas (CMMs) into five flavors (sweet, bitter, sour, salty, and pungent) based on their taste and medical functions. Although CMM has been successfully applied in China for thousands of years, it is still a big challenge to interpret CMM flavor via modern biomarkers, further deepening its elusiveness. Herein, to identify the correlation between gut microbiota and CMM flavor, we selected 14 CMMs with different flavors to prepare their aqueous extracts, quantified the contained major chemical components, and then performed full-length 16S rRNA sequencing to analyze the gut microbiota of C57BL/6 mice administrated with CMM extracts. We found that flavones, alkaloids, and saponins were the richest components for sweet-, bitter-, and pungent-flavored CMMs, respectively. Medicines with merged flavors (bitter-pungent and sweet-pungent) displayed mixed profiles of components. According to gut microbial analysis, modulation of CMMs belonging to the same flavor on the taxonomic classification was inconsistent to an extent, while the functional sets of gut microbiota, co-abundance gene groups (CAGs), strongly and differentially responded to distinct flavors. Moreover, these correlations were in line with their pharmacological actions. Therefore, the gut microbial functional sets (CAGs) could act as the possible indicator to reflect CMM flavor, rather than the composition of microbial community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww完成签到 ,获得积分10
刚刚
妙法山人完成签到 ,获得积分10
1秒前
1秒前
3秒前
neufy发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
djbj2022发布了新的文献求助10
4秒前
蓝天应助135gcl采纳,获得30
5秒前
蚊蚊爱读书完成签到,获得积分0
6秒前
tejing1158完成签到 ,获得积分10
7秒前
printzhao发布了新的文献求助10
9秒前
9秒前
neufy完成签到,获得积分10
9秒前
搬砖人发布了新的文献求助10
10秒前
10秒前
文俊伟发布了新的文献求助10
10秒前
内向如松发布了新的文献求助30
12秒前
13秒前
13秒前
14秒前
万能图书馆应助luobeimin采纳,获得10
14秒前
14秒前
FashionBoy应助非言墨语采纳,获得10
14秒前
15秒前
传奇3应助陈一朵采纳,获得10
16秒前
顾矜应助文俊伟采纳,获得10
16秒前
16秒前
17秒前
林林林林发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
田宇22333发布了新的文献求助10
20秒前
21秒前
汉堡包应助这波你的吗采纳,获得10
23秒前
轻松雁蓉发布了新的文献求助10
23秒前
24秒前
汉堡包应助深情海亦采纳,获得10
25秒前
zhong发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610157
求助须知:如何正确求助?哪些是违规求助? 4694672
关于积分的说明 14883860
捐赠科研通 4721346
什么是DOI,文献DOI怎么找? 2545014
邀请新用户注册赠送积分活动 1509927
关于科研通互助平台的介绍 1473039