扩散
化学物理
粘弹性
分子
前线(军事)
反常扩散
促进扩散
菲克扩散定律
动力学
分子扩散
纳米技术
化学
物理
材料科学
经典力学
计算机科学
热力学
膜
公制(单位)
知识管理
生物化学
创新扩散
运营管理
有机化学
气象学
经济
作者
Weixiang Chen,Brigitta Dúzs,Pablo G. Argudo,Sebastian V. Bauer,Wei Liu,Avik Samanta,Sapun H. Parekh,Mischa Bonn,Andreas Walther
标识
DOI:10.1038/s41565-025-01941-0
摘要
Abstract Biomolecular condensates in cells compartmentalize vital processes by enriching molecules through molecular recognition. However, it remains elusive how transport occurs in biomolecular condensates and how it relates to their dynamic and/or viscoelastic state. We show that the transport of molecules in DNA model condensates does not follow classical Fickian diffusion, which has a blurry front with a square root of time dependence. By contrast, we identify a new type of transport with an ultrasharp front that propagates linearly with time. Our data reveal that this ultrasharp ballistic diffusion front originates from molecular recognition and an arrested-to-dynamic transition in the condensate properties. This diffusion mechanism is the result of intertwining chemical kinetics and condensate dynamics on transport in biomolecular condensates. We believe that our understanding will help to better explain and tune the dynamics and properties in synthetic condensate systems and for biological functions.
科研通智能强力驱动
Strongly Powered by AbleSci AI