脂肪组织
癌症研究
免疫系统
CXCL5型
趋化因子
肿瘤微环境
肿瘤坏死因子α
生物
免疫检查点
医学
内科学
免疫学
免疫疗法
内分泌学
作者
Ryan Walsh,Joseph Ambrose,Jarrid Jack,Austin E. Eades,Bailey Bye,Mariana T. Ruckert,Fanuel Messaggio,Appolinaire Olou,Prabhakar Chalise,Dong Pei,Michael N. VanSaun
标识
DOI:10.1136/jitc-2024-010057
摘要
Background CXCR1/2 inhibitors are being implemented with immunotherapies in PDAC clinical trials. CXC-ligands are a family of cytokines responsible for stimulating these receptors; while typically secreted by activated immune cells, fibroblasts, and even adipocytes, they are also secreted by immune-evasive cancer cells. CXC-ligand release is known to occur in response to inflammatory stimuli. Adipose tissue is an endocrine organ and a source of inflammatory signaling peptides. Importantly, adipose-derived cytokines and chemokines are implicated as potential drivers of tumor cell immune evasion; cumulatively, these findings suggest that targeting CXC-ligands may be beneficial in the context of obesity. Methods RNA-sequencing of human PDAC cell lines was used to assess influences of adipose conditioned media on the cancer cell transcriptome. The adipose-induced secretome of PDAC cells was validated with ELISA for induction of CXCL5 secretion. Human tissue data from CPTAC was used to correlate IL-1β and TNF expression with both CXCL5 mRNA and protein levels. CRISPR-Cas9 was used to knockout CXCL5 from a murine PDAC KPC cell line to assess orthotopic tumor studies in syngeneic, diet-induced obese mice. Flow cytometry and immunohistochemistry were used to compare the immune profiles between tumors with or without CXCL5. Mice-bearing CXCL5 competent or deficient tumors were monitored for differential tumor size in response to anti-PD-1 immune checkpoint blockade therapy. Results Human adipose tissue conditioned media stimulates CXCL5 secretion from PDAC cells via either IL-1β or TNF; neutralization of both is required to significantly block the release of CXCL5 from tumor cells. Ablation of CXCL5 from tumors promoted an enriched immune phenotype with an unanticipatedly increased number of exhausted CD8 T cells. Application of anti-PD-1 treatment to control tumors failed to alter tumor growth, yet treatment of CXCL5-deficient tumors showed response by significantly diminished tumor mass. Conclusions In summary, our findings show that both TNF and IL-1β can stimulate CXCL5 release from PDAC cells in vitro, which correlates with expression in patient data. CXCL5 depletion in vivo alone is sufficient to promote T cell infiltration into tumors, increasing efficacy and requiring checkpoint blockade inhibition to alleviate tumor burden.
科研通智能强力驱动
Strongly Powered by AbleSci AI