Smooth Optimised A*-Guided DWA for Mobile Robot Path Planning

运动规划 避障 路径(计算) 平滑度 计算机科学 移动机器人 平滑的 数学优化 任意角度路径规划 算法 控制理论(社会学) 机器人 人工智能 数学 计算机视觉 控制(管理) 数学分析 程序设计语言
作者
Liling Cao,Lei Tang,Shouqi Cao,Qing Sun,Guofeng Zhou
出处
期刊:Applied sciences [MDPI AG]
卷期号:15 (13): 6956-6956 被引量:2
标识
DOI:10.3390/app15136956
摘要

In mobile robot path planning, the traditional A* algorithm suffers from high path redundancy and poor smoothness, while the Dynamic Window Approach (DWA) tends to deviate from the global optimal path and has low efficiency in avoiding dynamic obstacles when integrated with global path planning. To address these issues, a smoothing optimised A*-guided DWA fusion algorithm (SOA-DWA) is proposed in this paper. Firstly, the A* algorithm was improved by introducing a path smoothing strategy and path pruning mechanism, generating a globally optimal path that complied with the vehicle kinematic constraints. Secondly, three sub-functions were introduced into the evaluation function of the DWA algorithm: the distance evaluation between the reference trajectory and the global path, the path direction evaluation, and the dynamic obstacle avoidance evaluation, to enhance the real-time performance of dynamic obstacle avoidance and the consistency of the global path. The SOA-DWA algorithm ensured that the mobile robot could effectively avoid obstacles in complex environments without deviating from the global optimal path. Thirdly, experimental results show that in a static environment, the path length and turning angle of the SOA-DWA algorithm are reduced by an average of 13.3% and 16.25%, respectively, compared with the traditional algorithm. In a dynamic environment, the path length and turning angle are reduced by an average of 10.5% and 14.5% compared to the traditional DWA algorithm, respectively, significantly improving the smoothness of the path and driving safety. Compared to the existing fusion algorithm, the SOA-DWA algorithm reduces the path length by an average of 10.1%, improves planning efficiency by an average of 42%, and effectively enhances obstacle avoidance efficiency. Finally, the effectiveness of the improved algorithm proposed in this paper was further verified by mobile robot experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suliang完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
6秒前
我是老大应助文献狗采纳,获得10
6秒前
Eunice发布了新的文献求助10
6秒前
7秒前
7秒前
无极微光应助sang采纳,获得20
8秒前
8秒前
azami完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
崔懿龍发布了新的文献求助10
10秒前
科研喵发布了新的文献求助10
10秒前
痴情的雁易完成签到,获得积分10
11秒前
科研通AI6应助揽星采纳,获得10
12秒前
12秒前
12秒前
pb发布了新的文献求助10
14秒前
15秒前
李伟峰发布了新的文献求助10
15秒前
小兔子乖乖完成签到 ,获得积分10
16秒前
要开心吖完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
传奇3应助Patronus采纳,获得10
18秒前
19秒前
19秒前
front发布了新的文献求助10
20秒前
20秒前
科研通AI2S应助贝壳采纳,获得10
20秒前
文献狗发布了新的文献求助10
22秒前
23秒前
哇咔咔发布了新的文献求助10
23秒前
露露完成签到 ,获得积分10
23秒前
望远山完成签到,获得积分10
24秒前
Gauss应助朴素灯泡采纳,获得30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643099
求助须知:如何正确求助?哪些是违规求助? 4760606
关于积分的说明 15020012
捐赠科研通 4801508
什么是DOI,文献DOI怎么找? 2566806
邀请新用户注册赠送积分活动 1524714
关于科研通互助平台的介绍 1484256