清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MHF: A multi-task hybrid fusion method for underwater image enhancement based on biological vision

水下 能见度 计算机科学 计算机视觉 人工智能 图像融合 失真(音乐) 图像质量 对比度(视觉) 图像(数学) 光学 物理 地质学 带宽(计算) 海洋学 计算机网络 放大器
作者
Yuanqing Chi,Chao Zhang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:20 (5): e0320155-e0320155
标识
DOI:10.1371/journal.pone.0320155
摘要

Enhancement of underwater images is a new challenge in image research because low image visibility and contrast due to wavelength attenuation of underwater light and the effect of suspended particles in the water are most obvious. These problems can lead to difficulties in underwater information extraction and affect the development of underwater research, so we propose a multi-task hybrid fusion method (MHF) for underwater image enhancement based on biological vision. In terms of technological innovation, we designed an improved type II fuzzy set computation module based on the foundation of biological vision to improve the visibility of images. Meanwhile, we designed an adjustable contrast stretching module to improve image visibility. In addition, inspired by the fusion approach, we introduce a visual fusion module which fuses the results of the above two modules with a weight ratio. Therefore, this method focusing on multi-task synchronization can overcome the limitations of previous methods and effectively solve the problems of white balance distortion, color shift, low visibility, and low contrast in underwater images, and achieve the best results in the application tests of geometric rotation estimation, feature point matching, and edge detection. The experimental results demonstrate that the application results of this research method on 2 datasets outperform the top 14 existing algorithms. The wide applicability and excellent performance of the method are verified through application tests on various underwater vision tasks. By explicitly addressing the limitations of existing methods, the method becomes an advantageous solution in underwater image processing, providing enhancements in image quality and task-specific applications in a concise and efficient manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
qiongqiong完成签到 ,获得积分10
8秒前
9秒前
思源应助读书的时候采纳,获得10
15秒前
17秒前
26秒前
35秒前
38秒前
40秒前
45秒前
45秒前
50秒前
54秒前
58秒前
研友_ngqgY8发布了新的文献求助20
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
bigtree完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688338
求助须知:如何正确求助?哪些是违规求助? 5065546
关于积分的说明 15193862
捐赠科研通 4846587
什么是DOI,文献DOI怎么找? 2598958
邀请新用户注册赠送积分活动 1551040
关于科研通互助平台的介绍 1509667