Engineering spin coherence in core-shell diamond nanocrystals

纳米晶 钻石 纳米技术 壳体(结构) 芯(光纤) 材料科学 连贯性(哲学赌博策略) 物理 量子力学 复合材料
作者
Uri Zvi,Denis R. Candido,Adam M. Weiss,Aidan R. Jones,Lingjie Chen,И. С. Головина,Xiaofei Yu,Stella Wang,Dmitri V. Talapin,Michael E. Flatté,Aaron P. Esser‐Kahn,Peter C. Maurer
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (21) 被引量:1
标识
DOI:10.1073/pnas.2422542122
摘要

Fluorescent diamond nanocrystals can host spin qubit sensors capable of probing the physical properties of biological systems with nanoscale spatial resolution. Sub-100 nm diamond nanosensors can readily be delivered into intact cells and even living organisms. However, applications beyond current proof-of-principle experiments require a substantial increase in sensitivity, which is limited by surface induced charge instability and electron-spin dephasing. In this work, we utilize engineered core-shell structures to achieve a drastic increase in qubit coherence times (T2) from 1.1 to 35 μs in bare nanodiamonds to upward of 52 to 87 μs. We use electron-paramagnetic-resonance results to present a band bending model and connect silica encapsulation to the removal of deleterious mid-gap surface states that are negatively affecting the qubit's spin properties. Combined with a 1.9-fold increase in particle luminescence these advances correspond to up to two-order-of-magnitude reduction in integration time. Probing qubit dynamics at a single particle level further reveals that the noise characteristics fundamentally change from a bath with spins that rearrange their spatial configuration during the course of an experiment to a more dilute static bath. The observed results shed light on the underlying mechanisms governing fluorescence and spin properties in diamond nanocrystals and offer an effective noise mitigation strategy based on engineered core-shell structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈永伟完成签到,获得积分10
刚刚
刚刚
zheng完成签到 ,获得积分10
1秒前
萧水白完成签到,获得积分10
1秒前
MZ完成签到,获得积分0
1秒前
Just森完成签到,获得积分10
1秒前
忧郁平蝶完成签到,获得积分10
2秒前
思源应助neutrino采纳,获得10
2秒前
222完成签到 ,获得积分10
2秒前
边诺完成签到,获得积分10
2秒前
3秒前
哆啦A梦的小小王完成签到,获得积分10
3秒前
王加通完成签到,获得积分10
3秒前
池鱼完成签到,获得积分10
3秒前
Depeng完成签到,获得积分10
4秒前
文献高手完成签到 ,获得积分10
5秒前
pophoo完成签到,获得积分10
5秒前
史雷完成签到,获得积分10
6秒前
朴素海亦完成签到 ,获得积分10
6秒前
阿叶同学完成签到,获得积分10
6秒前
6秒前
8秒前
浪子应助liuqizong123采纳,获得10
8秒前
Bethwy发布了新的文献求助200
9秒前
xrl完成签到 ,获得积分10
9秒前
弎夜完成签到,获得积分10
9秒前
10秒前
佘秋凤完成签到 ,获得积分10
12秒前
糖糖完成签到 ,获得积分10
13秒前
呵呵完成签到 ,获得积分10
13秒前
14秒前
阿金发布了新的文献求助10
14秒前
123456完成签到 ,获得积分10
14秒前
ll完成签到,获得积分10
15秒前
可爱冰绿完成签到,获得积分10
16秒前
学术神经完成签到,获得积分10
16秒前
LEMON完成签到,获得积分10
17秒前
英俊的铭应助gbw123采纳,获得30
17秒前
Lucas应助花花采纳,获得10
18秒前
谦让青旋发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5045064
求助须知:如何正确求助?哪些是违规求助? 4274440
关于积分的说明 13324123
捐赠科研通 4088258
什么是DOI,文献DOI怎么找? 2236862
邀请新用户注册赠送积分活动 1244204
关于科研通互助平台的介绍 1172241