Highly Imperceptible Black-Box Graph Injection Attacks with Reinforcement Learning

强化学习 黑匣子 钢筋 图形 计算机科学 人工智能 心理学 社会心理学 理论计算机科学
作者
Minjie Zhao,Jing Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (12): 13357-13364
标识
DOI:10.1609/aaai.v39i12.33458
摘要

Recent studies have revealed the vulnerability of graph neural networks (GNNs) to adversarial attacks. In practice, effectively attacking GNNs is not easy. Existing attack methods primarily focus on modifying the topology of the graph data. In many scenarios, attackers do not have the authority to manipulate the graph's topology, making such attacks challenging to execute. Although node injection attacks are more feasible than modifying the topology, current injection attacks rely on knowledge of the victim model's architecture. This dependency significantly degrades attack quality when there is inconsistency in the victim models. Moreover, the generation of injected nodes often lacks precise control over features, making it difficult to balance attack effectiveness and stealthiness. In this paper, we investigate a node injection attack under model-agnostic conditions and propose Targeted Evasion Attack via Node Injection (TEANI). Specifically, TEANI models the generation of adversarial nodes as a Markov process. Without considering the target model's structure, it guides the agent to select features that maximize attack effectiveness within a budget, based solely on the results of queries to a black-box model. Extensive experiments on real-world datasets and mainstream GNN models demonstrate that the proposed TEANI poses more effective and imperceptible threats than state-of-the-art attack methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈发布了新的文献求助10
刚刚
lyn完成签到,获得积分10
1秒前
2秒前
ys完成签到,获得积分10
3秒前
研友_VZG7GZ应助Yang_728采纳,获得10
3秒前
zz发布了新的文献求助10
3秒前
木头发布了新的文献求助10
4秒前
渴望者完成签到,获得积分10
4秒前
斯文败类应助陈田田采纳,获得10
5秒前
1.1发布了新的文献求助10
5秒前
orixero应助雾散采纳,获得10
5秒前
深情安青应助11采纳,获得20
6秒前
半城烟火完成签到 ,获得积分10
6秒前
7秒前
何洋完成签到 ,获得积分10
10秒前
自信不愁完成签到,获得积分10
12秒前
xl发布了新的文献求助10
13秒前
13秒前
强健的皮卡丘完成签到,获得积分10
14秒前
华仔应助lily采纳,获得10
14秒前
大个应助星河不入眼采纳,获得10
14秒前
Jasper应助zz采纳,获得10
15秒前
nimonimo完成签到,获得积分10
16秒前
无水乙醚完成签到,获得积分10
16秒前
17秒前
填海发布了新的文献求助10
17秒前
太渊完成签到 ,获得积分10
18秒前
20秒前
carols应助健壮的怜烟采纳,获得16
21秒前
彭于晏应助科研通管家采纳,获得10
21秒前
21秒前
我是老大应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
22秒前
英姑应助科研通管家采纳,获得10
22秒前
何洋发布了新的文献求助10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
思源应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4721283
求助须知:如何正确求助?哪些是违规求助? 4081224
关于积分的说明 12621031
捐赠科研通 3786469
什么是DOI,文献DOI怎么找? 2091212
邀请新用户注册赠送积分活动 1117322
科研通“疑难数据库(出版商)”最低求助积分说明 994097