High Performance Thin-Film Lithium Niobate Modulator on Silicon Substrate with a Thick Silica Buffer Layer

材料科学 铌酸锂 缓冲器(光纤) 图层(电子) 光学 基质(水族馆) 光电子学 薄膜 光调制器 相位调制 纳米技术 计算机科学 电信 海洋学 物理 地质学 相位噪声
作者
Yongqian Tang,quanan chen,Xiang Ma,Ge Liu,Xiangyang Dai,Qiaoyin Lu,Weihua Guo
出处
期刊:Optics Express [Optica Publishing Group]
标识
DOI:10.1364/oe.560548
摘要

The integration of thin-film lithium niobate (TFLN) modulators into optical communication systems has garnered significant attention due to their potential for enabling high-speed and energy-efficient optical modulation. As the demand for higher data transmission rates continues to grow, there is an urgent need to enhance the bandwidth and performance of TFLN modulators to meet the requirements of next-generation communication networks. Recent advancements have demonstrated that capacitively loaded traveling wave electrodes (CL-TWEs) on quartz and silicon-removed substrates can significantly improve the bandwidth of TFLN modulators. However, these approaches are hindered by fabrication complexities and immaturity compared to well-established silicon-based TFLN wafers, limiting their practical adoption in commercial systems. In this work, we propose a solution to these challenges by developing a high-performance in-phase/quadrature (IQ) modulator fabricated on a TFLN wafer with a 15-µm-thick silica buried layer. The thick buffer layer plays a critical role in achieving velocity matching between the CL-TWEs and the optical wave on a silicon substrate, thereby optimizing the TFLN modulator's performance. Experimental results demonstrate that the proposed modulator achieves an electro-optic (EO) bandwidth exceeding 67 GHz, a remarkably low fiber-to-fiber loss of only 4 dB, and an extinction ratio greater than 30 dB. These performance metrics highlight the modulator's capability to support high-speed and high-order modulation formats, which are essential for modern optical communication systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四体不勤发布了新的文献求助10
刚刚
1秒前
LLP发布了新的文献求助10
2秒前
kk完成签到,获得积分10
2秒前
大意的冰真完成签到,获得积分10
3秒前
3秒前
凡仔发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
止戈为武完成签到,获得积分10
7秒前
JiaQi完成签到,获得积分10
8秒前
8秒前
晨曦发布了新的文献求助10
9秒前
arui发布了新的文献求助10
10秒前
YF发布了新的文献求助10
10秒前
JiaQi发布了新的文献求助10
11秒前
一一发布了新的文献求助10
11秒前
凡仔完成签到,获得积分10
12秒前
12秒前
NINISO完成签到,获得积分10
14秒前
杨旭完成签到,获得积分10
15秒前
英吉利25发布了新的文献求助10
18秒前
浮游应助晨曦采纳,获得10
19秒前
斯文败类应助YF采纳,获得10
21秒前
21秒前
22秒前
23秒前
24秒前
许结朱陈完成签到 ,获得积分10
29秒前
cylee发布了新的文献求助10
29秒前
合适板栗完成签到,获得积分10
30秒前
31秒前
31秒前
隐形萃完成签到 ,获得积分10
32秒前
bogba完成签到,获得积分10
32秒前
32秒前
33秒前
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4804341
求助须知:如何正确求助?哪些是违规求助? 4120965
关于积分的说明 12750005
捐赠科研通 3854064
什么是DOI,文献DOI怎么找? 2122468
邀请新用户注册赠送积分活动 1144515
关于科研通互助平台的介绍 1035729