亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence-based model for diagnosing Helicobacter pylori in whole-slide images

幽门螺杆菌 人工智能 计算机科学 医学 内科学
作者
Keliang Teng,Lihua Ren,Xiaoyu Yan,Yilin Duan,Zhe Chen,Hansheng Li,Lihua Zhang,Lei Cui
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:12
标识
DOI:10.3389/fmed.2025.1594614
摘要

Helicobacter pylori (H. pylori) infection is considered to be a primary causative factor for gastric cancer and a common cause of chronic gastritis worldwide. Identifying H. pylori infection through hematoxylin and eosin (H&E) staining is demanding and tedious for pathologists. We aimed to use artificial intelligence (AI) models to improve the accuracy and efficiency of H. pylori diagnosis and to reduce the workload of pathologists. Here, we developed three multi-instance learning (MIL) models: AB-MIL, DS-MIL, and Trans-MIL, to automatically detect H. pylori infection. A total of 1,020 digitized histological whole-slide images (WSI) from 817 patients were used for training, validating and testing sets at a ratio of 3:1:1. Additionally, 100 cases (218 WSIs) were randomly selected from the test set for pathologists to identify H. pylori under the microscope. The accuracy, specificity, sensitivity, false negative rate, false positive rate, and other metrics were calculated separately for the MIL models and the pathologists. All three models demonstrated good diagnostic performance in predicting H. pylori infection, with the DS-MIL classification model showing the best diagnostic performance, achieving an accuracy of 89.7% and an area under the curve (AUC) of 0.949, which is higher than the accuracy rate of senior pathologists at 81.7%. Furthermore, the model demonstrates superior performance in terms of sensitivity and specificity. The reliability of DS-MIL is confirmed through the Visual model. Our research presents an AI - based predictive model for H. pylori infection, which significantly enhances clinical efficiency and diagnostic accuracy. Currently, we are conducting multi-center validation to enhance the model's generalization capability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Becky完成签到 ,获得积分10
3秒前
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
代芙应助科研通管家采纳,获得10
4秒前
4秒前
Orange应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
8秒前
是鱼鱼鱼呀呼完成签到 ,获得积分10
9秒前
香蕉梨愁发布了新的文献求助10
10秒前
wbs13521完成签到,获得积分0
12秒前
12秒前
lmk完成签到 ,获得积分10
13秒前
13秒前
14秒前
dede发布了新的文献求助10
19秒前
clhoxvpze完成签到 ,获得积分10
19秒前
20秒前
lanxinyue应助读书的时候采纳,获得10
21秒前
胡图图啦啦完成签到 ,获得积分10
21秒前
酷炫的荧完成签到,获得积分10
24秒前
25秒前
哆啦猫完成签到,获得积分10
25秒前
香蕉梨愁发布了新的文献求助10
28秒前
叶子完成签到 ,获得积分10
34秒前
葡萄味的果茶完成签到 ,获得积分10
36秒前
冷酷哈密瓜完成签到,获得积分10
38秒前
42秒前
50秒前
香蕉梨愁发布了新的文献求助10
51秒前
wsyiming发布了新的文献求助30
55秒前
55秒前
56秒前
hahaha完成签到 ,获得积分10
56秒前
cjh发布了新的文献求助200
1分钟前
1分钟前
lu发布了新的文献求助10
1分钟前
高分求助中
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4098748
求助须知:如何正确求助?哪些是违规求助? 3636335
关于积分的说明 11525359
捐赠科研通 3346329
什么是DOI,文献DOI怎么找? 1839138
邀请新用户注册赠送积分活动 906496
科研通“疑难数据库(出版商)”最低求助积分说明 823812