Underwater 3D measurement based on improved YOLOv8n and laser scanning imaging device

水下 计算机科学 人工智能 噪音(视频) 激光扫描 激光器 扫描仪 光学 计算机视觉 图像质量 信噪比(成像) 物理 图像(数学) 电信 海洋学 地质学
作者
Yuhang Wang,Lingfan Bu,Jinghui Zhang,Xinyu Wang,Tao Zhang
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:96 (6)
标识
DOI:10.1063/5.0256098
摘要

The wide range of optical planes in underwater laser imaging results in the presence of a large number of noisy light bars in the background region. Since the shape and intensity of these noisy light bars are very similar to the target information, it is difficult to detect and eliminate them accurately. In this paper, a deep learning algorithm named YOLOv8-FWR is proposed, which can effectively improve the efficiency and quality of underwater laser imaging by combining with laser scanning imaging equipment. First, we introduce a novel pooling module called Focal_SPPF to mitigate the impact of background noise. Second, we propose a weighted feature Concat module to enhance the detection of small target light bars located at the object’s edges. Finally, to enhance the model’s adaptability for underwater deployment, we optimized the C2f module through structural reparameterization techniques. This approach effectively reduced the model’s parameter count while enhancing its accuracy. We constructed a dataset containing a large amount of background noise by simulating the process of underwater laser scanning imaging and evaluated the effectiveness of the augmented model through ablation and comparison experiments. The experimental results indicate that our model outperforms the YOLOv8n by obtaining an 8.6% improvement on mAP50–95 and reducing the parameter count by 37%. A favorable balance between detection accuracy and number of parameters is achieved. Meanwhile, experiments on VOC2012 and the Underwater Detection Dataset (UDD) verify its good generalizability. Finally, we built a rotating line laser scanning imaging system and validated its effectiveness through underwater laser scanning experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YYY发布了新的文献求助10
刚刚
小太阳完成签到,获得积分10
刚刚
图嘤嘤发布了新的文献求助10
刚刚
777完成签到,获得积分20
1秒前
大模型应助嘻嘻嘻采纳,获得10
1秒前
LIVE完成签到,获得积分10
1秒前
3秒前
Stella发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
Feren完成签到,获得积分20
5秒前
pps完成签到,获得积分10
7秒前
嗯嗯完成签到,获得积分10
7秒前
CodeCraft应助发财总采纳,获得10
7秒前
CodeCraft应助埃及下雨了采纳,获得10
7秒前
丸子发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
zengyu发布了新的文献求助10
8秒前
动听的乐安应助憨憨兔子采纳,获得10
8秒前
大模型应助diguohu采纳,获得10
8秒前
希望天下0贩的0应助jimmy采纳,获得10
9秒前
123发布了新的文献求助10
10秒前
10秒前
智齿怪物一号完成签到,获得积分10
10秒前
听听看完成签到,获得积分10
10秒前
12秒前
12秒前
12秒前
wanglu完成签到,获得积分10
12秒前
任鑫宇完成签到,获得积分10
12秒前
飘逸剑身发布了新的文献求助10
13秒前
franklin发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
王海建完成签到,获得积分20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111733
求助须知:如何正确求助?哪些是违规求助? 4319895
关于积分的说明 13460131
捐赠科研通 4150717
什么是DOI,文献DOI怎么找? 2274399
邀请新用户注册赠送积分活动 1276292
关于科研通互助平台的介绍 1214447