Forest Site Quality Evaluation Using UAV Remote Sensing Technology

遥感 质量(理念) 计算机科学 环境科学 环境资源管理 地理 认识论 哲学
作者
Xiangfei Lu,Liyong Fu,Xiaowen Dou,Ram P. Sharma,Xuan Yi,Xiaodi Zhao
标识
DOI:10.20944/preprints202505.0134.v1
摘要

Accurately assessing the quality of a forested site is essential for sustainable forest management. In forest practices, assessment methods primarily rely on ground meas-urements, but these approaches face challenges such as high costs, low efficiency, and spatial and temporal limitations in data collection. At present, a large number of studies have explored the application of UAV remote sensing technology in forest resource monitoring and have made significant progress in biomass estimation, forest structure analysis and carbon stock assessment. However, existing research still lacks a program to integrate traditional site quality assessment methods with UAV remote sensing data systems. To fill this gap, this paper takes UAV LiDAR acquisition of high-precision point cloud data as the core, and combines UAV data processing with the evaluation model based on potential productivity to realize the accurate extraction and quantitative assessment of stand factors. The study mainly includes three major steps: data acquisition and preprocessing, stand factor extraction, and quantitative assessment of stand quality, and the stand factors include elevation, slope direction, slope gradient, slope position, soil type, and depression. This study was conducted at Chinese fir (Cunninghamia lanceolata) plantations in Guangdong, southern China. High-precision point cloud data were collected from 133 sample plots using drone LiDAR for experimental validation. In this study, the data of 133 sample plots are randomly divided into two groups, one group of 89 sample plots is used to train the model, and one group of 44 sample plots is used for model valida-tion. In particular, the growth models constructed achieved determination coefficients of 0.6745 for stand height, 0.7460 for diameter at breast height, and 0.8071 for volume, indicating high model fitting and demonstrating the method’s good predictive capa-bility. And the validation results of the validation dataset for the model have R2 as low as 0.5634 and as high as 0.7856, with most of them around 0.7, which proves that the model has a fair prediction ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nakl完成签到,获得积分10
1秒前
唐唐发布了新的文献求助30
2秒前
123发布了新的文献求助30
3秒前
善学以致用应助野猪采纳,获得10
4秒前
4秒前
4秒前
华仔应助威武的戎采纳,获得10
5秒前
曹广秀发布了新的文献求助10
7秒前
余念发布了新的文献求助10
8秒前
meng完成签到,获得积分10
10秒前
NexusExplorer应助幸福向秋采纳,获得10
10秒前
10秒前
123完成签到,获得积分10
10秒前
Stella应助鱼鱼鱼采纳,获得30
10秒前
r41r32完成签到 ,获得积分10
15秒前
15秒前
完美世界应助金金采纳,获得10
15秒前
15秒前
immm完成签到 ,获得积分10
16秒前
碎冰果果完成签到,获得积分10
18秒前
19秒前
lxy发布了新的文献求助10
19秒前
天天快乐应助天开眼采纳,获得10
20秒前
拼搏忆文完成签到,获得积分10
21秒前
22秒前
缘起缘灭完成签到,获得积分10
22秒前
22秒前
Hilda007应助JERRY采纳,获得10
23秒前
23秒前
ZONG发布了新的文献求助10
23秒前
拼搏忆文发布了新的文献求助10
24秒前
刘子完成签到 ,获得积分10
25秒前
随意发布了新的文献求助50
25秒前
26秒前
hong发布了新的文献求助10
28秒前
Zhang_Yakun发布了新的文献求助30
28秒前
28秒前
xue完成签到,获得积分10
29秒前
29秒前
29秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339456
求助须知:如何正确求助?哪些是违规求助? 4476253
关于积分的说明 13930947
捐赠科研通 4371718
什么是DOI,文献DOI怎么找? 2402066
邀请新用户注册赠送积分活动 1395009
关于科研通互助平台的介绍 1366964