Multi-scale fusion convolutional neural network model for leakage size inversion of compressor valves

泄漏(经济) 卷积神经网络 反演(地质) 计算机科学 气体压缩机 融合 人工智能 材料科学 航空航天工程 地质学 工程类 哲学 构造盆地 宏观经济学 古生物学 经济 语言学
作者
Yingkang Lu,Buyun Sheng,Yanfei Li,Zhibo Jiang,Yu Jiang,Xiaqiu Xiao,Junpeng Yu,Jiaxiang Zhu,Yuzhe Huang,Xiangxiang Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/add039
摘要

Abstract Valve leakage can cause reciprocating air compressors to lose operating performance or even shut down, and its leakage size cannot be directly measured. Therefore, in order to be able to achieve an accurate assessment of the valve leakage size, this paper proposes a multi-scale fusion convolutional neural network (MSFCNN)-based air compressor valve leakage size inversion model for quantifying the size of the valve leakage. The model is designed with micro-feature and macro-feature extraction channels. The macro-feature channel takes the acoustic emission data features with strong correlation coefficients with the valve leakage size as inputs, while the micro-feature channel uses wavelet decomposition to obtain the different frequency features of the acoustic emission signals, which can extract more detailed feature information. Then, through the network structure of MSFCNN, the features of these two channels are fused to achieve the comprehensive extraction and analysis of multi-scale features of acoustic emission signals, and finally the inversion of valve leakage size. In the model training phase, an automatic windowing technique is used to ensure the integrity and accuracy of the input signals. The experimental results show that the proposed model exhibits excellent performance in acoustic emission-based leakage size inversion compared to other models, which provides an important basis for valve leakage condition assessment and predictive maintenance of reciprocating air compressors to ensure their normal and efficient operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武白桃完成签到,获得积分10
1秒前
明明明完成签到,获得积分10
1秒前
2秒前
阿仔爱学习完成签到,获得积分10
2秒前
Allen发布了新的文献求助10
3秒前
我老公敖光完成签到,获得积分10
3秒前
摆哥发布了新的文献求助10
3秒前
天真依玉完成签到,获得积分10
3秒前
4秒前
星辰发布了新的文献求助10
4秒前
ZW发布了新的文献求助10
4秒前
wangxiaoyating完成签到,获得积分10
4秒前
tc应助buluu采纳,获得10
4秒前
4秒前
5秒前
纪梵希完成签到,获得积分10
5秒前
沉默的谷秋完成签到,获得积分10
5秒前
科研小白完成签到 ,获得积分10
5秒前
浊酒发布了新的文献求助10
6秒前
6秒前
兜兜完成签到,获得积分20
6秒前
风中飞扬者完成签到 ,获得积分10
7秒前
shirely发布了新的文献求助10
7秒前
7秒前
Jenlisa完成签到 ,获得积分10
7秒前
better完成签到,获得积分10
7秒前
8秒前
咬经受搓狐臭空调完成签到,获得积分10
8秒前
9秒前
浮笙完成签到,获得积分10
9秒前
彭于晏应助星辰采纳,获得10
9秒前
hahaha完成签到,获得积分10
9秒前
lily完成签到,获得积分10
10秒前
chenkui完成签到,获得积分10
10秒前
huangying发布了新的文献求助10
10秒前
小崽总完成签到,获得积分10
10秒前
11秒前
changjiaren发布了新的文献求助10
11秒前
灵舒完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4473356
求助须知:如何正确求助?哪些是违规求助? 3932350
关于积分的说明 12200085
捐赠科研通 3586974
什么是DOI,文献DOI怎么找? 1971774
邀请新用户注册赠送积分活动 1009704
科研通“疑难数据库(出版商)”最低求助积分说明 903366